Skip to main content
Log in

Synthesis of Sr2KNb5O15 Thin Films by Chemical Solution Deposition Method

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Crack-free and transparent Sr2KNb5O15 (SKN) thin films have been synthesized by the chemical solution deposition method. A homogeneous and stable precursor solution was prepared via controlling the reaction of metal alkoxides. SKN precursor was found to be the complex alkoxide between Sr[Nb(OEt)6]2 and KNb(OEt)6 with high structural symmetry. SKN powders and thin films on fused silica substrates directly crystallized to the polycrystalline tetragonal tungsten bronze phase at 600 °C. Highly oriented SKN thin films with the tetragonal tungsten bronze phase were fabricated on MgO(100) and Pt(100)/MgO(100) substrates. Two crystal lattice planes of SKN were intergrown at an orientation of 18.5° on MgO(100). The dielectric constant of SKN thin films on Pt(100)/MgO(100) was about 590 at 20 °C at 1 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tabor, Hardness of Metals (Clarendon Press, Oxford, UK, 1951).

    Google Scholar 

  2. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Book  Google Scholar 

  3. N.A. Stilwell and D. Tabor, Proc. Phys. Soc. London 78, 169 (1961).

    Article  Google Scholar 

  4. S.I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov, A. P. Ternovskii, and G.D. Shnyrev, Zavod. Lab. 41, 1137 (1975).

    CAS  Google Scholar 

  5. S.I. Bulychev and V.P. Alekhin, Zavod. Lab. 53, 76 (1987).

    Google Scholar 

  6. R. B. King, Int. J. Solids Structures 23, 1657 (1987).

    Article  Google Scholar 

  7. B.R. Lawn and V.R. Howes, J. Mater. Sci. 16, 2745 (1981).

    Article  CAS  Google Scholar 

  8. J. L. Loubet, J. M. Georges, and G. Meille, in Microindentation Techniques in Materials Science and Engineering, edited by P. J. Blay and B.R. Lawn (ASTM STP 889, Philadelphia, PA, 1986), p. 72.

    Google Scholar 

  9. M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  10. M. J. Mayo, R. W. Siegel, Y. X. Liao, and W. D. Nix, J. Mater. Res. 7, 973 (1992).

    Article  CAS  Google Scholar 

  11. E. Söderlund and D. J. Rowcliffe, J. Hard Mater. 5, 149 (1994).

    Google Scholar 

  12. K. Zeng, A.E. Giannakopoulos, and D. J. Rowcliffe, Acta Metall. Mater. 43, 1945 (1955).

    Article  Google Scholar 

  13. K. Zeng, E. Söderlund, A.E. Giannakopoulos, and D. J. Rowcliffe, Acta Mater. 44, 1127 (1996).

    Article  CAS  Google Scholar 

  14. P-L. Larsson, A.E. Giannakopoulos, E. Söderlund, D.J. Rowcliffe, and R. Vestergaard, Int. J. Solids Structures 33, 221 (1996).

    Article  Google Scholar 

  15. G.M. Pharr and R. F. Cook, J. Mater. Res. 5, 847 (1990).

    Article  Google Scholar 

  16. G. M. Pharr, W. C. Oliver, and F. R. Brotzen, J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  17. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  18. R.F. Cook and G. M. Pharr, J. Hard Mater. 5, 179 (1994).

    CAS  Google Scholar 

  19. K. Tanaka, H. Koguchi, and T. Mura, Int. J. Eng. Sci. 27, 11 (1989).

    Article  CAS  Google Scholar 

  20. K. Tanaka and H. Koguchi, in Micromechanics and Inhomogeneity, edited by G. J. Weng, M. Taya, and H. Abé (Springer-Verlag, New York, 1990), p. 421.

    Chapter  Google Scholar 

  21. Y. Murakami and M. Itokazu, Int. J. Solids Structures 34, 4005 (1997).

    Article  Google Scholar 

  22. Y. Murakami, K. Tanaka, M. Itokazu, and A. Shimamoto, Philos. Mag. A69, 1131 (1994).

    Article  Google Scholar 

  23. J. S. Field and M. V. Swain, J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  24. E.R. Weppelmann, J.S. Field, and M.V. Swain, J. Mater. Res. 8, 830 (1993).

    Article  CAS  Google Scholar 

  25. J. S. Field and M. V. Swain, J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  26. V. Marx and H. Balke, Acta Mater. 45, 3791 (1997).

    Article  CAS  Google Scholar 

  27. M. Sakai, Acta Metall. Mater. 41, 1751 (1993).

    Article  CAS  Google Scholar 

  28. E. Meyer, Zeits. d. Vereines Deutsch. Ingenieure 52, 645, 740, 835 (1908).

  29. P. Ludwik, Die Kegelprobe (J. Springer, Berlin, Germany, 1908).

  30. R. Smith and G. Sandland, Proc. Ins. Mech. Eng. 1, 623 (1922).

    Article  CAS  Google Scholar 

  31. E.S. Berkovich, Int. Diamond Rev. 11, 129 (1951).

    Google Scholar 

  32. F. Knoop, C. G. Peters, and W.B. Emerson, Natl. Bureau Standards 23, 39 (1939).

    Article  Google Scholar 

  33. I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  34. M. Sakai, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, W., Yogo, T., Kuroyanagi, T. et al. Synthesis of Sr2KNb5O15 Thin Films by Chemical Solution Deposition Method. Journal of Materials Research 14, 14 (1999). https://doi.org/10.1557/JMR.1999.0200

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.1999.0200

Navigation