Skip to main content
Log in

Evolution of phases and microstructure in optical waveguides of lithium niobate

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructural development of Ti: LiNbO3 optical waveguides, as a function of annealing time and temperature, was studied by x-ray diffraction, scanning and transmission electron microscopy, and Auger electron spectroscopy. The microstructure evolves in three major stages: oxidation, precipitation and abnormal grain growth, and interdiffusion. The deposited Ti film is oxidized at low temperatures through a series of intermediate TiOx phases until complete oxidation to rutile TiO2 occurs at ∼500 °C. At intermediate temperatures, 500-800 °C, epitaxial precipitates of LiNb3O8 are formed at the rutile/LiNbO3 interface. At this stage abnormal grain growth occurs in the rutile film, causing multivariant epitaxy where all of the grains have a single orientation relationship to the substrate. Subsequent interdiffusion between TiO2 and LiNb3O8 produces a solid solution with the rutile structure which, at these temperatures, appears to coexist in equilibrium with the underlying lithium niobate substrate. This rutile solid solution serves as the source of Ti in the final stage of interdiffusion, which occurs only at higher temperatures (≳ 1000 °C), and leads to consumption of the rutile layer by the substrate. Structural models are discussed for epitaxial grain growth and interdiffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.V. Schmidt and LP. Kaminov, Appl. Phys. Lett. 25, 458 (1974).

    Article  CAS  Google Scholar 

  2. R.A. Becker, Mater. Res. Bull. XIII, 21 (1988).

    Article  Google Scholar 

  3. S. Forhouhar, G. E. Betts, and W. S. Chang, Appl. Phys. Lett. 45, 207 (1984).

    Article  Google Scholar 

  4. C. Canali, A. Camera, G. Celotti, G. Delia Mea, and P. Mazzoldi, in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by J. H. Crawford, Jr., Y. Chen, and W.A. Sibley (Mater. Res. Soc. Symp. Proc. 24, Elsevier Science Publishing, New York, 1984), p. 459.

  5. P. M. Read, S. P. Speakman, M. D. Hudson, and L. Considine, Nucl. Instrum. Methods Phys. Res. B15, 398 (1986).

    Article  CAS  Google Scholar 

  6. M. N. Armenise, C. Canali, M. De Sario, A. Camera, P. Mazzoldi, and G. Celotti, J. Appl. Phys. 54, 62 (1983).

    Article  CAS  Google Scholar 

  7. C. Canali, M. N. Armenise, M. De Sario, A. Camera, P. Mazzoldi, and G. Celotti, in "Processing of Guided Wave Optoelectronic Materials," SPIE Proceedings, 460 (SPIE, 1984), p. 34.

  8. M. De Sario, M. N. Armenise, C. Canali, A. Camera, P. Mazzoldi, and G. Celotti, J. Appl. Phys. 57, 1482 (1985).

    Article  Google Scholar 

  9. M. Lundberg, Acta Chem. Scand. 25, 3337 (1971).

    Article  CAS  Google Scholar 

  10. L. O. Svaasand, M. Eriksrud, G. Nakken, and A. P. Grande, J. Cryst. Growth 22, 230 (1974).

    Article  CAS  Google Scholar 

  11. M.A. McCoy, S.A. Dregia, and W.E. Lee, J. Mater. Res. 9, 2029 (1994).

    Article  CAS  Google Scholar 

  12. R.J. Esdaile, J. Appl. Phys. 58, 1070 (1985).

    Article  CAS  Google Scholar 

  13. R.J. Holmes and D.M. Smyth, J. Appl. Phys. 55, 3531 (1984).

    Article  CAS  Google Scholar 

  14. C.E. Rice and R.J. Holmes, J. Appl. Phys. 60, 3836 (1986).

    Article  CAS  Google Scholar 

  15. Vesuvius McDanel Co., Beaver Falls, PA.

  16. W.E. Lee, in "Integrated Optical Circuit Engineering IV, SPIE Proceedings, 704 (SPIE, 1986), p. 102.

  17. J. C. Bravman and R. Sinclair, J. Electron. Microsc. Technique 1, 53 (1984).

    Article  CAS  Google Scholar 

  18. JCPDS Powder Diffraction File.

  19. D.P. Birnie III, J. Mater. Sci. 28, 302 (1993).

    Article  CAS  Google Scholar 

  20. JCPDS Powder Diffraction File, 21–1276.

  21. J.W. Cahn and G. Kalonji, Proc. Int. Conf. Solid-Solid Phase Trans., edited by H. I. Aaronson, D. E. Laughlin, R. F. Sekerka, and C. M. Wayman (The Metall. Soc. of AIME, 1982), pp. 3–14.

  22. W. W. Mullins, Acta Metall. 6, 414 (1958).

    Article  Google Scholar 

  23. W. W. Mullins, J. Appl. Phys. 28, 333 (1957).

    Article  CAS  Google Scholar 

  24. C. V. Thompson, Annu. Rev. Mater. Sci. 20, 245 (1990).

    Article  CAS  Google Scholar 

  25. D.S. Phillips, A.H. Heuer, and T.E. Mitchell, Philos. Mag. A 42, 385 (1980).

    Article  CAS  Google Scholar 

  26. D. S. Phillips, A. H. Heuer, and T. E. Mitchell, Philos. Mag. A 42, 405 (1980).

    Article  CAS  Google Scholar 

  27. J. A. Garcia, M. E. Villafuerte-Castrejon, J. Andrade, R. Valuenzuela, and A. R. West, Mater. Res. Bull. XIX, 649 (1984).

    Article  Google Scholar 

  28. P.K. Gallagher and H.M. O’Bryan, Jr., J. Am. Ceram. Soc. 71, C56 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCoy, M.A., Dregia, S.A. & Lee, W.E. Evolution of phases and microstructure in optical waveguides of lithium niobate. Journal of Materials Research 9, 2040–2050 (1994). https://doi.org/10.1557/JMR.1994.2040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.2040

Navigation