Skip to main content

Advertisement

Log in

Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NbOx thin films have been deposited on silicon (100) and quartz substrates by magnetron sputtering using a metallic Nb target in an optimized argon–oxygen atmosphere. This work investigates the dependence of structure–property relations on the key deposition parameters towards establishing optimum deposition conditions for the growth of NbOx polycrystalline films. It is found that a sputtering condition corresponding to DC power density 9.87 W cm−2, a substrate temperature of 720 °C, low gas pressures of 8 mtorr, a target to substrate distance of 45 mm gives thin films with good homogeneity and a high degree of crystallinity in the case of both NbO2 and Nb2O5. X-ray diffraction (XRD) and Raman spectroscopy confirmed the tetragonal phase of NbO2 and orthorhombic phase of Nb2O5 for similar deposition temperatures. Scanning electron microscopy (SEM) observations indicate that NbO2 has a unique nanoslice structure while Nb2O5 has a flake-like structure. The optical transmittance of the films has been investigated and found to be dependent on the oxygen gas content during deposition; the optical transmittance decreases with increasing O2 gas content. Optical constants of the films were calculated by fitting a suitable thin film transmittance model to experimental transmittance spectra using a modified Swanepoel technique. The nanohardness and stress in the films were measured by nanoindentation and an optical profilometer respectively. Nanohardness and stress in the film show no large dependence on the oxygen gas content except at high oxygen gas content. The nanohardness value of NbO2 films is approximately 6 GPa, and the Young’s modulus is 150 GPa. The Nb2O5 films exhibit a nanohardness of 5.8–13 GPa and a Young’s modulus of 137–161 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.K. Hulm, C.K. Jones, R.A. Hein, J.W. Gibson, Superconductivity in the TiO and NbO systems. J. Low Temp. Phys. 7, 291–307 (1972). https://doi.org/10.1007/BF00660068

    Article  Google Scholar 

  2. R.F. Janninck, D.H. Whitmore, Electrical conductivity and thermoelectric power of niobium dioxide. J. Phys. Chem. Solids 27, 1183–1187 (1966). https://doi.org/10.1016/0022-3697(66)90094-1

    Article  Google Scholar 

  3. C. Funck, S. Menzel, N. Aslam, H. Zhang, A. Hardtdegen, R. Waser, S. Hoffmann-Eifert, Multidimensional simulation of threshold switching in NbO2 based on an electric field triggered thermal runaway model. Adv. Electron. Mater. 2(7), 1600169 (2016). https://doi.org/10.1002/aelm.201600169

    Article  Google Scholar 

  4. Y. Zhao, Z. Zhang, Y. Lin, Optical and dielectric properties of a nanostructured NbO2 thin film prepared by thermal oxidation. J. Phys. D 37, 3392–3395 (2004). https://doi.org/10.1088/0022-3727/37/24/006

    Article  Google Scholar 

  5. Y. Wang, R.B. Comes, S. Kittiwatanakul, S.A. Wolf, J. Lu, Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition. J. Vac. Sci. Technol. A 33, 021516 (2015). https://doi.org/10.1116/1.4906143

    Article  Google Scholar 

  6. M. Vinnichenko, A. Rogozin, D. Grambole, F. Munnik, A. Kolitsch, W. Möller, O. Stenzel, S. Wilbrandt, A. Chuvilin, U. Kaiser, Highly dense amorphous Nb2O5 films with closed nanosized pores. Appl. Phys. Lett. 95, 081904 (2009). https://doi.org/10.1063/1.3212731

    Article  Google Scholar 

  7. M.A. Aegerter, Sol-gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol. Energy Mater. Sol. Cells 68(3–4), 401–422 (2001). https://doi.org/10.1016/S0927-0248(00)00372-X

    Article  Google Scholar 

  8. M.F. Pillis, G.A. Geribola, G. Scheidt, E.G. de Araújo, M.C.L. de Oliveira, R.A. Antunes, Corrosion of thin, magnetron sputtered Nb2O5 films. Corros. Sci. 102, 317–325 (2016). https://doi.org/10.1016/j.corsci.2015.10.023

    Article  Google Scholar 

  9. C. Nico, M.R.N. Soares, J. Rodrigues, M. Matos, R. Monteiro, M.P.F. Graça, M.A. Valente, F.M. Costa, T. Monteiro, Sintered NbO powders for electronic device applications. J. Phys. Chem. C 115, 4879–4886 (2011). https://doi.org/10.1021/jp110672u

    Article  Google Scholar 

  10. H. Kupfer, T. Flügel, F. Richter, P. Schlott, Intrinsic stress in dielectric thin films for micromechanical components. Surf. Coatings Technol. 116–119, 116–120 (1999). https://doi.org/10.1016/S0257-8972(99)00114-0

    Article  Google Scholar 

  11. S. Lee, H. Yoon, I. Yoon, B. Kim, Single crystalline NbO2 nanowire synthesis by chemical vapor transport method. Bull. Korean Chem. Soc. 33, 839–842 (2012). https://doi.org/10.5012/Bkcs.2012.33.3.839

    Article  Google Scholar 

  12. M.P.F. Graça, A. Meireles, C. Nico, M.A. Valente, Nb2O5 nanosize powders prepared by sol–gel—structure, morphology and dielectric properties. J. Alloys Compds. 553, 177–182 (2013). https://doi.org/10.1016/j.jallcom.2012.11.128

    Article  Google Scholar 

  13. J.P. Masse, H. Szymanowski, O. Zabeida, A. Amassian, J.E. Klemberg-Sapieha, L. Martinu, Stability and effect of annealing on the optical properties of plasma-deposited Ta2O5 and Nb2O5 films. Thin Solid Films 515, 1674–1682 (2006). https://doi.org/10.1016/j.tsf.2006.05.047

    Article  Google Scholar 

  14. G. Bräuer, B. Szyszka, M. Vergöhl, R. Bandorf, Magnetron sputtering—milestones of 30 years. Vacuum 84(12), 1354–1359 (2010). https://doi.org/10.1016/j.vacuum.2009.12.014

    Article  Google Scholar 

  15. F.J. Wong, N. Hong, S. Ramanathan, Orbital splitting and optical conductivity of the insulating state of NbO2. Phys. Rev. B 90, 1–8 (2014). https://doi.org/10.1103/physrevb.90.115135

    Article  Google Scholar 

  16. C. Nico, T. Monteiro, M.P.F. Graça, Niobium oxides and niobates physical properties: review and prospects. Prog. Mater Sci. 80, 1–37 (2016). https://doi.org/10.1016/j.pmatsci.2016.02.001

    Article  Google Scholar 

  17. M.P.F. Graça, M. Saraiva, F.N.A. Freire, M.A. Valente, L.C. Costa, Electrical analysis of niobium oxide thin films. Thin Solid Films 585, 95–99 (2015). https://doi.org/10.1016/j.tsf.2015.02.047

    Article  Google Scholar 

  18. K. Yoshimura, T. Miki, S. Iwama, S. Tanemura, Characterization of niobium oxide electrochromic thin films prepared by reactive d.c. magnetron sputtering. Thin Solid Films 281–282, 235–238 (1996). https://doi.org/10.1016/0040-6090(96)08640-3

    Article  Google Scholar 

  19. S. Venkataraj, R. Drese, O. Kappertz, R. Jayavel, M. Wuttig, Characterization of niobium oxide films prepared by reactive DC magnetron sputtering. Phys. Status Solidi Appl. Res. 188, 1047–1058 (2001). https://doi.org/10.1002/1521-396X(200112)188:3%3c1047:AID-PSSA1047%3e3.0.CO;2-J

    Article  Google Scholar 

  20. A. Foroughi-Abari, K.C. Cadien, Growth, structure and properties of sputtered niobium oxide thin films. Thin Solid Films 519(10), 3068–3073 (2011). https://doi.org/10.1016/j.tsf.2010.12.036

    Article  Google Scholar 

  21. D.E. Kramer, A.A. Volinsky, N.R. Moody, W.W. Gerberich, Substrate effects on indentation plastic zone development in thin soft films. J. Mater. Res. 16(11), 3150–3157 (2001). https://doi.org/10.1557/JMR.2001.0434

    Article  Google Scholar 

  22. X. Feng, Y. Huang, A.J. Rosakis, On the stoney formula for a thin film/substrate system with nonuniform substrate thickness. J. Appl. Mech. 74(6), 1276–1281 (2007). https://doi.org/10.1115/1.2745392

    Article  Google Scholar 

  23. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E 16(12), 1214–1222 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  Google Scholar 

  24. R. Swanepoel, Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J. Phys. E 17(10), 896 (1984). https://doi.org/10.1088/0022-3735/17/10/023

    Article  Google Scholar 

  25. J. Mistrik, S. Kasap, H.E. Ruda, C. Koughia, J. Singh, Optical properties of electronic materials, in Springer Handbook of Electronic and Photonic Materials, 2nd edn., ed. by S. Kasap, P. Capper (Springer, Heidelberg, 2017), pp. 47–83. https://doi.org/10.1007/978-3-319-48933-9. Chapter 3

    Google Scholar 

  26. P. Muhammed Shafi, A. Chandra Bose, Impact of crystalline defects and size on X-ray line broadening. AIP Adv. 5(5), 057137 (2015). https://doi.org/10.1063/1.4921452

    Article  Google Scholar 

  27. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  28. S. Kim, J. Park, J. Woo, C. Cho, W. Lee, J. Shin, G. Choi, S. Park, D. Lee, B.H. Lee, H. Hwang, Threshold-switching characteristics of a nanothin-NbO2-layer- based Pt/NbO2/Pt stack for use in cross-point-type resistive memories. Microelectron. Eng. 107, 33–36 (2013). https://doi.org/10.1016/j.mee.2013.02.084

    Article  Google Scholar 

  29. M. Kang, S. Yu, J. Son, Voltage-induced insulator-to-metal transition of hydrogen-treated NbO2 thin films. J. Phys. D 48(9), 095301 (2015). https://doi.org/10.1088/0022-3727/48/9/095301

    Article  Google Scholar 

  30. V.V. Atuchin, I.E. Kalabin, V.G. Kesler, N.V. Pervukhina, Nb 3d and O 1s core levels and chemical bonding in niobates. J. Electron Spectrosc. Relat. Phenom. 142, 129–134 (2005). https://doi.org/10.1016/j.elspec.2004.10.003

    Article  Google Scholar 

  31. D. Music, R.W. Geyer, Theoretical and experimental study of NbO2 nanoslice formation. J. Phys. D 48(30), 305302 (2015). https://doi.org/10.1088/0022-3727/48/30/305302

    Article  Google Scholar 

  32. R. Ghosh, M.K. Brennaman, T. Uher, M.-R. Ok, E.T. Samulski, L.E. McNeil, T.J. Meyer, R. Lopez, Nanoforest Nb2O5 photoanodes for dye-sensitized solar cells by pulsed laser deposition. ACS Appl. Mater. Interfaces 3(10), 3929–3935 (2011). https://doi.org/10.1021/am200805x

    Article  Google Scholar 

  33. S.A. O’Neill, I.P. Parkin, R.J.H. Clark, A. Mills, N. Elliott, Atmospheric pressure chemical vapour deposition of thin films of Nb2O5 on glass. J. Mater. Chem. 13(12), 2952–2956 (2003). https://doi.org/10.1039/B307768n

    Article  Google Scholar 

  34. C.C. Lee, C.L. Tien, J.C. Hsu, Internal stress and optical properties of Nb2O5 thin films deposited by ion-beam sputtering. Appl. Opt. 41(10), 2043–2047 (2002). https://doi.org/10.1364/AO.41.002043

    Article  Google Scholar 

  35. E. Cetinörgü-Goldenberg, J.E. Klemberg-Sapieha, L. Martinu, Effect of postdeposition annealing on the structure, composition, and the mechanical and optical characteristics of niobium and tantalum oxide films. Appl. Opt. 51(27), 6498–6507 (2012). https://doi.org/10.1364/AO.51.006498

    Article  Google Scholar 

  36. W.D. Nix, B.M. Clemens, Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14(8), 3467–3473 (1999). https://doi.org/10.1557/JMR.1999.0468

    Article  Google Scholar 

  37. S.O. Kasap, W.C. Tan, J. Singh, A.K. Ray, Fundamental optical properties of materials. In J. Singh (ed.) Optical Properties of Condensed Matter and Applications, 2nd edn (Wiley, Chichester, 2019)

  38. W. Sellener, Zur Erkarung der abnormen Farbenfolge im Spectrum einiger. Substanzen. Ann. Phys. Chem. 219, 272–282 (1871). https://doi.org/10.1002/andp.18712190612

    Article  Google Scholar 

  39. G. Mie, Contributions to the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 330(3), 377–445 (1908). https://doi.org/10.1002/andp.19083300302

    Article  Google Scholar 

  40. S.O. Kasap, Optoelectronics and Photonics: Principles & Practices, 2nd edn. (Pearson, Upper Saddle River, 2013)

    Google Scholar 

  41. G. Ramírez, S.E. Rodil, S. Muhl, D. Turcio-Ortega, J.J. Olaya, M. Rivera, E. Camps, L. Escobar-Alarcón, Amorphous niobium oxide thin films. J. Non-Cryst. Solids 356(50–51), 2714–2721 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.09.073

    Article  Google Scholar 

  42. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  Google Scholar 

  43. A.P. Sokolov, A.P. Shebanin, O.A. Golikova, M.M. Mezdrogina, Structural disorder and optical gap fluctuations in amorphous silicon. J. Phys. 3(49), 9887–9894 (1991). https://doi.org/10.1088/0953-8984/3/49/005

    Google Scholar 

  44. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, New York, 1971)

    Google Scholar 

  45. A. O’Hara, T.N. Nunley, A.B. Posadas, S. Zollner, A.A. Demkov, Electronic and optical properties of NbO2. J. Appl. Phys. 116(21), 213705 (2014). https://doi.org/10.1063/1.4903067

    Article  Google Scholar 

Download references

Acknowledgements

This project was made possible by a research grant from Cisco Systems and a CRD from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nazmul Hossain or Qiaoqin Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, N., Günes, O., Zhang, C. et al. Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering. J Mater Sci: Mater Electron 30, 9822–9835 (2019). https://doi.org/10.1007/s10854-019-01319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01319-8

Navigation