Skip to main content
Log in

Chemical vapor infiltration of SiC with microwave heating

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 1993

This article has been updated

Abstract

A mathematical model was developed to elucidate the interaction between transport/reaction processes and the evolution of porosity in chemical vapor infiltration with microwave heating (MCVI). The analysis included a set of partial differential equations describing the spatiotemporal variation of gaseous species concentration, composite temperature, porosity, and stress. Maxwell’s equations were used to determine the distribution of power dissipated inside the composite. The deposition of silicon carbide was selected as a model chemical system to explore the general features of MCVI. MCVI can provide a favorable temperature distribution in the composite yielding an inside-out deposition pattern, thereby preventing entrapment of accessible porosity. For this temperature profile, tensile stresses develop at the outer regions and compressive stresses are found in the composite core. For a given system there exists a minimum value of the coefficient for heat transfer from the composite surface, h, below which accessible porosity is trapped within the composite. Similarly, there exists a maximum value of the incident microwave energy flux, I0, above which accessible porosity is trapped within the composite. I0 and h can be optimized for a given preform to achieve complete densification with minimum processing time. Using the technique of pulsed-power, the processing time can be reduced even further without compromising density uniformity. Power dissipation profiles in the composite depend strongly on preform thickness, microwave frequency, and relative loss factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. J.A. Cornie Y.M. Chiang, D. R. Uhlmann A. Mortensen and J. M. Collins Am. Ceram. Soc. Bull. 65, 293 (1986).

    CAS  Google Scholar 

  2. J. R. Strife J.J. Brennan and K. M. Prewo Ceram. Eng. Sci. Proc. 11, 871 (1990).

    Article  CAS  Google Scholar 

  3. M. A. Karnitz D. F. Craig and S. L. Richlen Am. Ceram. Soc. Bull. 70, 430 (1991).

    CAS  Google Scholar 

  4. T. M. Besmann R. A. Lowden B. W. Sheldon and D. P. Stinton in Chemical Vapor Deposition, edited by K. E. Spear and G. W. Cullen (The Electrochemical Society, Pennington, NJ, 1990), PV 90-12, p. 482.

    Google Scholar 

  5. W. H. Sutton, Am. Ceram. Soc. Bull. 68, 376 (1989).

    CAS  Google Scholar 

  6. Ceramic Transactions 21, edited by D. E. Clark F. D. Gac and W. H. Sutton (American Ceramic Society, Westerville, OH, 1991).

    Google Scholar 

  7. N.H. Tai and T.W. Chou, J. Am. Ceram. Soc. 73, 1489 (1990).

    Article  CAS  Google Scholar 

  8. S.M. Gupte and J. A. Tsamopoulos J. Electrochem. Soc. 137, 3675 (1990).

    Article  CAS  Google Scholar 

  9. S. Middleman J. Mater. Res. 4, 1515 (1989).

    Article  CAS  Google Scholar 

  10. B.W. Sheldon J. Mater. Res. 5, 2729 (1990).

    Article  CAS  Google Scholar 

  11. R. R. Melkote and K. F. Jensen in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by T. M. Besmann and B. M. Gallois (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 67.

    Google Scholar 

  12. S.V. Sotirchos AIChE J. 37, 1365 (1991).

    Article  CAS  Google Scholar 

  13. D. Gupta and J.W. Evans J. Mater. Res. 6, 810 (1991).

    Article  CAS  Google Scholar 

  14. J. I. Morell D. J. Economou and N. R. Amundson J. Elec-trochem. Soc. 139, 328 (1992).

    Article  CAS  Google Scholar 

  15. J. I. Morell D. J. Economou and N. R. Amundson J. Mater. Res. 7, 2447 (1992).

    Article  CAS  Google Scholar 

  16. J. A. Stratton Electromagnetic Theory (McGraw-Hill, New York, 1941).

    Google Scholar 

  17. G.A. Kriegsmann J. Appl. Phys. 71, 1960 (1992).

    Article  CAS  Google Scholar 

  18. B.A. Boley and J.H. Weiner Theory of Thermal Stresses, 4th printing (John Wiley, New York, 1967).

    Google Scholar 

  19. R. Jackson Transport in Porous Catalysts (Elsevier Publishing Company, New York, 1977).

    Google Scholar 

  20. R. B. Bird W. E. Stewart and E. N. Lightfoot Transport Phenomena (John Wiley & Sons, New York, 1960).

    Google Scholar 

  21. R.R. Melkote and K.F. Jensen AIChE J. 35, 1942 (1989).

    Article  CAS  Google Scholar 

  22. M. M. Tomadakis and S. V. Sotirchos AIChE J. 37, 74 (1991).

    Article  CAS  Google Scholar 

  23. J. Schlichting Powder Metall. Int. 12, 141 (1980).

    CAS  Google Scholar 

  24. F. Langlais R. Naslain B. Tarride and C. Prebende J. de Physique SO, 93 (1989).

  25. K. Brennfleck E. Fitzer G. Schoch and M. Dietrich in Proc. Int. Conf. on CVD, edited by M. Robison C.H.J. van den Brekel, G. W. Cullen J. M. Blocher Jr., and P. Rai-Choudhury (The Electrochemical Society, Pennington, NJ, 1984), Vol. 84-6, p. 649.

    Google Scholar 

  26. C. de Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morell, J.I., Economou, D.J. & Amundson, N.R. Chemical vapor infiltration of SiC with microwave heating. Journal of Materials Research 8, 1057–1067 (1993). https://doi.org/10.1557/JMR.1993.1057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.1057

Navigation