Skip to main content
Log in

Experiment and Inverse Analysis to Estimate SiO2 Aerogel Composite’s Thermophysical Properties by the Surface’s Temperature Response

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

SiO2 aerogel is a sort of nano-particles&pores porous medium possessed of excellent thermal insulation performance which is worth excavating related parameters. Based on simple experiments and simplified heat transfer equations, as many parameters as possible can be deduced under limited conditions. In this paper, the hot surface’s temperature response of SiO2 aerogel composites with different components of fiber and opacifier are measured by experiment, and the thermal conductivity, λ, and thermal effusivity, \(\sqrt {\lambda \rho c_{{\text{p}}} }\), are λ = 0.0270–0.0386 W·m−1·K−1 and \(\sqrt {\lambda \rho c_{{\text{p}}} }\)= 75.933–113.185 J·m−2·K·s−0.5 at Tcold = 298 K & ΔT < 15 K, respectively. Through the inverse analysis of the Levenberg–Marquardt method, the λ, specific heat capacity, cp, and thermal diffusivity, a, can be estimated by analyzing the above hot surface’s temperature response, which is λ = 0.0284–0.0391 W·m−1·K−1, cp = 761.7–2237.3 J·kg−1·K−1, a = 5.575–13.570 × 10–8 m2·s−1, respectively, where the maximum deviation is no more than 6.11 %. Sensitivity coefficients of λ and cp co-influence initial unsteady-state while λ dominates heat transfer after that. Micron SiC and SiO2 hollow spheres inside SiO2 aerogel will inhibit the the thermal radiation and improved the insulation performance at large ΔT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Thermal diffusivity

c p :

Specific heat, J·kg1·K1

F :

Temperature difference, K or °C

g :

Acceleration of gravity, m·s2

h c :

Convective heat transfer coefficient, W·m2·K1

μ :

1st derivative of ThotTcold with respect to √t

L :

Characteristic length, m

q 0 :

Heat flux, W·m2

P :

Heating power, W

T :

Temperature, K or oC

T mi :

Measured temperature

T ci :

Calculated temperature

T end :

Final temperature, K or oC

T hot :

Temperature of the specimen’s hot surface, K or oC

T cold :

Temperature of the specimen’s hot surface, K or oC

U :

Voltage, V

t:

Time, s

x :

Geometrical coordinate along the depth of the object

x i :

Inversed parameter

X :

Collection of inversed parameters

Δ :

Thickness of specimen, m

Δe :

Result bias

ΔT :

Temperature difference, K

ζ:

Sensitivity coefficient matrix

μ :

Damping parameter

δ k :

Second order identity matrix

σ :

Blackbody radiation constant

ψ :

Objective function

ε :

One smaller positive value

c:

Conduction

cold:

Cold surface

e:

Experiment

hot:

Hot surface

k:

Count times

LM:

Levenberg–Marquardt

p:

Number of reversed parameters

ref:

Reference

T:

Transpose

References

  1. A. Du, B. Zhou, Z. Zhang, J. Shen, A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6, 941–968 (2013)

    Article  ADS  Google Scholar 

  2. Y.L. He, T. Xie, Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Therm. Eng. 81, 28–50 (2015)

    Article  Google Scholar 

  3. W.Z. Fang, H. Zhang, L. Chen, W.Q. Tao, Numerical predictions of thermal conductivities for the silica aerogel and its composites. Appl. Therm. Eng. 115, 1277–1286 (2017)

    Article  Google Scholar 

  4. M. Zhang, Q. Xiao, C. Chen, L. Li, W. Yuan, Developing a heat-insulating composite phase change material with light-to-thermal conversion performance from graphene oxide/silica hybrid aerogel. Appl. Therm. Eng. 174, 115303 (2020)

    Article  Google Scholar 

  5. C.Y. Zhu, Z.Y. Li, H.Q. Pang, N. Pan, Design and optimization of core/shell structures as highly efficient opacifiers for silica aerogels as high-temperature thermal insulation. Int. J. Therm. Sci. 133, 206–215 (2018)

    Article  Google Scholar 

  6. F. He, Z. Qi, W. Zhen, J.Y. Wu, Y.H. Huang, X.W. Xiong, R.Z. Zhang, Thermal conductivity of silica aerogel thermal insulation coatings. Int. J. Thermophys. 40, 1–12 (2019)

    Article  Google Scholar 

  7. J. Feng, D. Le, S.T. Nguyen, V.T.C. Nien, D. Jewell, H.M. Duong, Silica cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloids Surf. A. 506, 298–305 (2016)

    Article  Google Scholar 

  8. G. Wei, Y. Liu, X. Du, X. Zhang, Gaseous conductivity study on silica aerogel and its composite insulation materials. J. Heat Transf. (2012). https://doi.org/10.1115/1.4004170

    Article  Google Scholar 

  9. H. Zhang, W.Z. Fang, X. Wang, Y.M. Li, W.Q. Tao, Thermal conductivity of fiber and opacifier loaded silica aerogel composite. Int. J. Heat Mass Transf. 115, 21–31 (2017)

    Article  Google Scholar 

  10. Y.J. Dai, Y.Q. Tang, W.Z. Fang, H. Zhang, W.Q. Tao, A theoretical model for the effective thermal conductivity of silica aerogel composites. Appl. Therm. Eng. 128, 1634–1645 (2018)

    Article  Google Scholar 

  11. C. Meng, H. Yuan, Examination on aerogel based on the heat transfer characteristics of nanotechnology. Ferroelectrics 580, 26–41 (2021)

    Article  Google Scholar 

  12. M.L. Zheng, The model and experiment for heat transfer characteristics of nanoporous silica aerogel. Korean J. Mater. Res. 30, 155–159 (2020)

    Article  Google Scholar 

  13. C.Y. Zhu, Z.Y. Li, Modeling of the apparent solid thermal conductivity of aerogel. Int. J. Heat Mass Transf. 120, 724–730 (2018)

    Article  Google Scholar 

  14. S. Zeng, A. Hunt, R. Greif, Geometric structure and thermal conductivity of porous medium silica aerogel. J. Heat Transf. 117, 1055 (1995)

    Article  Google Scholar 

  15. T. Xie, Y.L. He, Z.J. Hu, Theoretical study on thermal conductivities of silica aerogel composite insulating material. Int. J. Heat Mass Transf. 58, 540–552 (2013)

    Article  Google Scholar 

  16. A. Bernasconi, T. Sleator, D. Posselt, H.R. Ott, Dynamic technique for measurement of the thermal conductivity and the specific heat: application to silica aerogels. Rev. Sci. Instrum. 61, 2420–2426 (1990)

    Article  ADS  Google Scholar 

  17. V. Bock, O. Nilsson, J. Blumm, J. Fricke, Thermal properties of carbon aerogels. J. Non-Cryst. Solids 185, 233–239 (1995)

    Article  ADS  Google Scholar 

  18. H.Q. Pang, Z.Y. Li, Experimental investigations on the thermal insulation performance of SiC opacifier doped silica aerogel at large temperature difference. Int. J. Therm. Sci. 160, 106681 (2021)

    Article  Google Scholar 

  19. S. Chen, X. Jiang, G. Lu, Interior temperature measurement using curved mercury capillary sensor based on X-ray radiography. Int. J. Thermophys. 38, 97 (2017)

    Article  ADS  Google Scholar 

  20. M. Cui, X. Gao, J. Zhang, A new approach for the estimation of temperature-dependent thermal properties by solving transient inverse heat conduction problems. Int. J. Therm. Sci. 58, 113–119 (2012)

    Article  Google Scholar 

  21. J.I. Frankel, Residual-minimization least-squares method for inverse heat conduction. Comput. Math. Appl. 32, 117–130 (1996)

    Article  MathSciNet  Google Scholar 

  22. M. Cui, Y. Zhao, B. Xu, X.W. Gao, A new approach for determining damping factors in Levenberg-Marquardt algorithm for solving an inverse heat conduction problem. Int. J. Heat Mass Transf. 107, 747–754 (2017)

    Article  Google Scholar 

  23. P. Duda, A general method for solving transient multidimensional inverse heat transfer problems. Int. J. Heat Mass Transf. 93, 665–673 (2016)

    Article  Google Scholar 

  24. R. Sajedi, J. Faraji, F. Kowsary, A new damping strategy of Levenberg-Marquardt algorithm with a fuzzy method for inverse heat transfer problem parameter estimation. Int. Commun. Heat Mass Transf. 126, 105433 (2021)

    Article  Google Scholar 

  25. M. Cui, Y. Zhao, B. Xu, S. Wang, X.W. Gao, Inverse analysis for simultaneously estimating multi-parameters of temperature-dependent thermal conductivities of an Inconel in a reusable metallic thermal protection system. Appl. Therm. Eng. 125, 480–488 (2017)

    Article  Google Scholar 

  26. T. Xie, Y.L. He, Z.X. Tong, W.X. Yan, X.Q. Xie, An inverse analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material. Appl. Therm. Eng. 87, 214–224 (2015)

    Article  Google Scholar 

  27. K. Yang, G.H. Jiang, H.F. Peng, X.W. Gao, A new modified Levenberg-Marquardt algorithm for identifying the temperature-dependent conductivity of solids based on the radial integration boundary element method. Int. J. Heat Mass Transf. 144, 118615 (2019)

    Article  Google Scholar 

  28. S.Y. Zhao, B.M. Zhang, S.Y. Du, An inverse analysis to determine conductive and radiative properties of a fibrous medium. J. Quant. Spectrosc. Radiat. Transf. 110, 1111–1123 (2009)

    Article  ADS  Google Scholar 

  29. H.P. Gavin, The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems. Department of Civil and Environmental Engineering, Duke University (2019), pp. 1–19

  30. H.P. Ebert, S. Braxmeier, G. Reichenauer, F. Hemberger, F. Lied, D. Weinrich, M. Fricke, Intercomparison of thermal conductivity measurements on a nanoporous organic aerogel. Int. J. Thermophys. 42, 1–18 (2021)

    Article  ADS  Google Scholar 

  31. V.R. Voller, Fast implicit finite-difference method for the analysis of phase change problems. Numer. Heat Transf. 17, 155–169 (1990)

    Article  ADS  Google Scholar 

  32. D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  33. H. Zhang, W.Z. Fang, Y.M. Li, W.Q. Tao, Experimental study of the thermal conductivity of polyurethane foams. Appl. Therm. Eng. 115, 528–538 (2017)

    Article  Google Scholar 

  34. L.W. Hrubesh, Aerogel applications. J. Non-Cryst. Solids 225, 335–342 (1998)

    Article  ADS  Google Scholar 

  35. J.J. Zhao, Y.Y. Duan, X.D. Wang, X.R. Zhang, Y.H. Han, Y.B. Gao, Z.H. Lv, H.T. Yu, B.X. Wang, Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation. Int. J. Therm. Sci. 70, 54–64 (2013)

    Article  Google Scholar 

  36. C. Buratti, E. Moretti, E. Belloni, F. Merli, V. Piermatti, T. Ihara, Field experimental study on energy performance of Aerogel Glazings with hollow silica: preliminary results in mid-season conditions, in Sustainability in Energy and Buildings. ed. by A. Hakansson, M. Höjer (Springer, Berlin, 2020), pp. 185–197

    Chapter  Google Scholar 

  37. P. Yonathan, J.H. Lee, D.H. Yoon, W.J. Kim, J.Y. Park, Improvement of SiCf/SiC density by slurry infiltration and tape stacking. Mater. Res. Bull. 44, 2116–2122 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the China Postdoctoral Science Foundation (2020M681711), the Natural Science Fund for Colleges and Universities in Jiangsu Province under Grant 19KJB470030, and the Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province MZ26100119.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Qiang Pang or Xi Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, TH., Pang, HQ., Zhong, WR. et al. Experiment and Inverse Analysis to Estimate SiO2 Aerogel Composite’s Thermophysical Properties by the Surface’s Temperature Response. Int J Thermophys 43, 79 (2022). https://doi.org/10.1007/s10765-022-03000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03000-5

Keywords

Navigation