Skip to main content
Log in

A Numerical Study of Densification Behavior of Silicon Carbide Matrix Composites in Isothermal Chemical Vapor Infiltration

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the reaction. Thereby, we established mathematical models on two scales, respectively, preform and reactor. These models were used for the numerical simulation of the process of ceramic matrix composites densified by isothermal chemical vapor infiltration (ICVI). The models were used to carry out a systematic study on the influence of process conditions and the preform structure on the densification behaviors. The most important findings of our study are that the processing time could be reduced by about 50% without compromising the quality of the material, if the processing temperature is 950–1 000 °C for the first 70 hours and then raised to 1 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besmann TM, Sheldon BW, Lowden RA, et al. Vapor–Phase Fabrication and Properties of Continuous–Filament Ceramic Composites[J]. Science, 1991, 253: 1 104–1 109

    Google Scholar 

  2. Golecki I. Rapid Vapor–Phase Densification of Refractory Composites [J]. Materials Science and Engineering: R: Reports, 1997, 20: 37–124

    Article  Google Scholar 

  3. Naslain R, Langlais F, Vignoles G, et al. The CVI–Process: State of the Art and Perspective[C]. Tandon R, Wereszczak A, Lara–Curzio E (Eds.) Mechanical Properties and Performance of Engineering Ceramics II: Ceramic Engineering and Science Proceedings, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2008: 373–386

    Google Scholar 

  4. Xu Y, Yan XT. Chemical Vapour Infiltration[M]. Chemical Vapour Deposition, Springer London, 2010: 165–213

    Chapter  Google Scholar 

  5. Chung GY, McCoy BJ. Modeling of Chemical Vapor Infiltration for Ceramic Composites Reinforced with Layered, Woven Fabrics[J]. J. Am. Ceram. Soc., 1991, 74: 746–751

    Article  Google Scholar 

  6. Chung GY, McCoy BJ, Smith JM, et al. Chemical Vapor Infiltration: Modelling Solid Matrix Deposition in Ceramic–Ceramic Composites [J]. Chem. Eng. Sci., 1991, 46: 723–733

    Article  Google Scholar 

  7. Chung GY, McCoy BJ, Smith JM, et al. Chemical Vapor Infiltration: Modelling Solid Matrix Deposition for Ceramic Composites Reinforced with Layered Woven Fabrics[J]. Chem. Eng. Sci., 1992, 47 311–323

    Google Scholar 

  8. Chung GY, McCoy BJ, Smith JM, et al. Chemical Vapor Infiltration: Dispersed and Graded Depositions for Ceramic Composites[J]. AlChE J., 1993, 39: 1 834–1 846

    Article  Google Scholar 

  9. Kulik VI, Kulik AV, Ramm MS, et al. Modeling of SiC–Matrix Composite Formation by Isothermal Chemical Vapor Infiltration[J]. J. Cryst. Growth, 2004, 266: 333–339

    Article  Google Scholar 

  10. Wei X, Cheng L, Zhang L, et al. A Two–dimensional Model for Densification Behaviour of C/SiC Composites in Isothermal Chemical Vapour Infiltration[J]. Modell. Simul. Mater. Sci. Eng., 2006, 14: 891

    Article  Google Scholar 

  11. Wei X, Cheng L, Zhang L, et al. Numerical Simulation of Effect of Methyltrichlorosilane Flux on Isothermal Chemical Vapor Infiltration Process of C/SiC Composites[J]. J. Am. Ceram. Soc., 2006, 89: 2 762–2 768

    Google Scholar 

  12. Hua Y, Zhang L, Cheng L, et al. A Two–process Model for Study of the Effect of Fiber Preform Structure on Isothermal Chemical Vapor Infiltration of Silicon Carbide Matrix Composites[J]. Computational Materials Science, 2009, 46: 133–141

    Article  Google Scholar 

  13. Wei X, Cheng L, Zhang L, et al. Numerical Simulation for Fabrication of C/SiC Composites in Isothermal CVI Reactor[J]. Computational Materials Science, 2006, 38: 245–255

    Article  Google Scholar 

  14. Wei X, Cheng L, Zhang L, et al. Numerical Simulation of Effects of Reactor Dimensions on Isothermal CVI Process of C/SiC Composites [J]. Computational Materials Science, 2008, 44: 670–677

    Article  Google Scholar 

  15. Sheldon BW, Besmann TM. Reaction and Diffusion Kinetics during the Initial Stages of Isothermal Chemical Vapor Infiltration[J]. J. Am. Ceram. Soc., 1991, 74: 3 046–3 053

    Article  Google Scholar 

  16. Mason EA, Malinauskas A. Gas Transport in Porous Media: The Dusty–Gas Model[M]. Elsevier Amsterdam, 1983

    Google Scholar 

  17. Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena[M]. J. Wiley, 2007

    Google Scholar 

  18. Guan K, Cheng L, Zeng Q, et al. Prediction of Permeability for Chemical Vapor Infiltration[J]. J. Am. Ceram. Soc., 2013, 96: 2 445–2 453

    Article  Google Scholar 

  19. Guan K, Cheng L, Zeng Q, et al. Modeling of Pore Structure Evolution between Bundles of Plain Woven Fabrics during Chemical Vapor Infiltration Process: The Influence of Preform Geometry[J]. J. Am. Ceram. Soc., 2013, 96: 51–61

    Article  Google Scholar 

  20. Guan K, Cheng L, Zeng Q, et al. Modeling of Pore Structure Evolution within the Fiber Bundle during Chemical Vapor Infiltration Process[J]. Chem. Eng. Sci., 2011, 66: 5 852–5 861

    Article  Google Scholar 

  21. Besmann TM, Sheldon BW III TSM, et al. Depletion Effects of Silicon Carbide Deposition from Methyltrichlorosilane[J]. J. Am. Ceram. Soc., 1992, 75: 2 899–2 903

    Article  Google Scholar 

  22. Loumagne F, Langlais F, Naslain R. Reactional Mechanisms of the Chemical Vapour Deposition of Sic–Based Ceramics From CH3SiCl3/H2 Gas Precursor[J]. J. Cryst. Growth, 1995, 155: 205–213

    Article  Google Scholar 

  23. Loumagne F, Langlais F, Naslain R. Experimental Kinetic Study of the Chemical Vapour Deposition of SiC–based Ceramics from CH3SiCl3/H2 Gas Precursor[J]. J. Cryst. Growth, 1995, 155: 198–204

    Article  Google Scholar 

  24. Zhang WG, Hüttinger KJ. CVD of SiC from Methyltrichlorosilane. Part I: Deposition Rates[J]. Chem. Vap. Deposition, 2001, 7: 167–172

    Google Scholar 

  25. Papasouliotis GD, Sotirchos SV. Hydrogen Chloride Effects on the CVD of Silicon Carbide from Methyltrichlorosilane[J]. Chem. Vap. Deposition, 1998, 4: 235–246

    Article  Google Scholar 

  26. Reuge N, Vignoles GL. Modeling of Isobaric–isothermal Chemical Vapor Infiltration: Effects of Reactor Control Parameters on A Densification [J]. J. Mater. Process. Technol., 2005, 166: 15–29

    Article  Google Scholar 

  27. Vignoles GL, Descamps C, Reuge N. Interaction between A Reactive Preform and the Surrounding Gas–phase during CVI[J]. Journal de physique. IV, 2000, 10: Pr9–Pr17

    Google Scholar 

  28. Jiao Y, Li H, Li K. Multi–physical Field Coupling Simulation of TCVI Process for Preparing Carbon/carbon Composites[J]. Science in China Series E: Technological Sciences, 2009, 52: 3 173–3 179

    Article  Google Scholar 

  29. Besmann TM, Sheldon BW, Kaster MD. Temperature and Concentration Dependence of SiC Deposition on Nicalon Fibers[J]. Surf. Coat. Technol., 1990, 43–44: 167–175

    Article  Google Scholar 

  30. Brennfleck K, Fitzer E, Schoch G, et al. CVD of SiC–interlayers and Their Interaction with Carbon–Fibers and with Multilayered Nbn–Coatings [J]. J. Electrochem. Soc., NJ 08534, 1984: C94–C94

    Google Scholar 

  31. Zhang WG, Hüttinger KJ. CVD of SiC from Methyltrichlorosilane. Part II: Composition of the Gas Phase and the Deposit[J]. Chemical Vapor Deposition, 2001, 7: 173–181

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No.51472092). We also thank Northwestern Polytechnical University High Performance Computing Center for the allocation of computing time on their machines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Guan  (关康).

Additional information

Funded by the National Natural Science Foundation of China (No. 51472092)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, K., Wu, J. & Cheng, L. A Numerical Study of Densification Behavior of Silicon Carbide Matrix Composites in Isothermal Chemical Vapor Infiltration. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 1365–1371 (2018). https://doi.org/10.1007/s11595-018-1976-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1976-8

Key words

Navigation