Skip to main content
Log in

Fracture behavior of short-fiber reinforced materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A discrete model of springs with bond-bending forces is proposed to simulate the fracture process in a composite of short stiff fibers in a softer matrix. Both components are assumed to be linear elastic up to failure. We find that the critical fiber length of a single fiber composite increases roughly linearly with the ratio of the fiber elastic modulus to matrix modulus. The finite size of the lattice in the direction perpendicular to the fiber orientation considerably alters the behavior of the critical length for large values of the modulus ratio. The simulations of the fracture process reveal different fracture behavior as a function of the fiber content and length. We calculate the Young’s modulus, fracture stress, and the strain at maximum stress as a function of the fiber volume fraction and aspect ratio. The results are compared with the predictions of other theoretical studies and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hull, An Introduction to Composite Materials (Cambridge University Press, Cambridge, 1981).

  2. P. M. Duxbury, in Statistical Models for the Fracture of Disordered Media, edited by H. J. Herrmann and S. Roux (North-Holland, Amsterdam, 1990), p. 189.

  3. Y. Termonia, J. Mater. Sci. 22, 504 (1987).

    Article  CAS  Google Scholar 

  4. Y. Termonia, J. Mater. Sci. 22, 1733 (1987).

    Article  CAS  Google Scholar 

  5. Y. Termonia, J. Mater. Sci. 25, 4644 (1990).

    Article  CAS  Google Scholar 

  6. For a recent review, see Statistical Models for the Fracture of Disordered Media, edited by H. J. Herrmann and S. Roux (North-Holland, Amsterdam, 1990).

  7. P. D. Beale and D. J. Srolovitz, Phys. Rev. B 37, 5500 (1988).

    Article  Google Scholar 

  8. W.A. Curtin and H. Scher, J. Mater. Res. 5, 535 (1990).

    Article  CAS  Google Scholar 

  9. S. Roux and E. Guyon, J. Phys. Lett. (Paris) 46, L999 (1985).

  10. H. J. Herrmann, A. Hansen, and S. Roux, Phys. Rev. B 39, 637 (1989).

    Article  CAS  Google Scholar 

  11. S. Sahu and L.J. Broutman, Polym. Engin. Sci. 12, 91 (1972).

    Article  CAS  Google Scholar 

  12. A.N. Gent and C. Wang, J. Mater. Sci. 27, 2539 (1992).

    Article  CAS  Google Scholar 

  13. H. Kleinert, Gauge Fields in Condensed Matter (World Scientific, Singapore, 1989), Vol. 2, p. 768.

  14. S. Feng and P.N. Sen, Phys. Rev. Lett. 52, 216 (1984).

    Article  Google Scholar 

  15. M.A. Lemieux, P. Breton, and A-M.S. Trembley, J. Phys. Lett. (Paris) 46, LI (1985).

  16. L. de Arcangelis, A. Hansen, H. J. Herrmann, and S. Roux, Phys. Rev. B 40, 877 (1989).

    Article  Google Scholar 

  17. Y. Kantor and I. Webman, Phys. Rev. Lett. 52, 1891 (1984).

    Article  Google Scholar 

  18. S. Arbabi and M. Sahimi, Phys. Rev. B 38, 7173 (1988).

    Article  Google Scholar 

  19. E. Louis, F. Guinea, and F. Flores, in Fractals in Physics, edited by L. Pietronero and E. Tossatti (Elsevier, Amsterdam, 1986).

  20. S. Roux, in Ref. 6, p. 87.

  21. This kind of external displacement, with free boundary conditions on the lattice edges, leads to an enhanced strain on the bonds that are in the corners of the lattice. In fact, for a homogeneous lattice, the most strained bonds are the horizontal bonds on the extreme right and left of the rows next to the top and the bottom ones. These have elongations about 20% higher than those of the interior bonds. This strain enhancement leads to fracture initiation from those bonds in pure matrix materials, or in materials with low concentration of fibers. The same effect was noticed in the study by Curtin and Scher.8 It is probably possible to correct this drawback by using a more complex geometry for the lattice so as to render the stress distribution more uniform. However, we think that although the simulated fracture stresses in this geometry turn out to be smaller than what they should be, the qualitative results are not affected.

  22. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York, 1980), p. 572.

  23. G. G. Batrouni and A. Hansen, J. Stat. Phys. 52, 747 (1988).

    Article  Google Scholar 

  24. This is another aspect in which this model differs from the work of Herrmann et al.10 They included all the intermediate displacements in their stress-strain curves, using some averaging process. It is not clear to which physical assumptions their averaging corresponds.

  25. H. L. Cox, Br. J. Appl. Phys. 3, 72 (1952).

    Article  Google Scholar 

  26. E. M. Asloun, M. Nardin, and J. Schultz, J. Mater. Sci. 24, 1835 (1989).

    Article  CAS  Google Scholar 

  27. A. Kelly and W. R. Tyson, J. Mech. Phys. Solids 13, 329 (1965).

    Article  CAS  Google Scholar 

  28. M.J. Folkes and D.A.M. Russel, Polymer 21, 1252 (1980).

    Article  CAS  Google Scholar 

  29. W. Weibull, Fatigue Testing and Analysis of Results (Pergamon, New York, 1961).

  30. L. Monette, M. P. Anderson, S. Ling, and G. S. Grest, J. Mater. Sci. 27, 4393 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murat, M., Anholt, M. & Wagner, H.D. Fracture behavior of short-fiber reinforced materials. Journal of Materials Research 7, 3120–3131 (1992). https://doi.org/10.1557/JMR.1992.3120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.3120

Navigation