Skip to main content
Log in

Stress transfer in single-fibre composites: effect of adhesion, elastic modulus of fibre and matrix, and polymer chain mobility

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The stress transfer in single-fibre composites is studied experimentally by determining the critical fibre length to diameter ratio,I c/d, in carbon fibre-epoxy resin or poly (ethylene vinyl acetate) systems. Our results and a great number of others available in the literature are compared with the predictions given, on the one hand, by the analytical approach by Cox and, on the other hand, by the theoretical study using finite element technique by Termonia. First, the influence of the fibre-matrix adhesion is analysed and it is observed, in agreement with Termonia, thatI c/d strongly decreases when the bonding efficiency between the two components is increased. Secondly, assuming a perfect fibre-matrix adhesion, it is shown that the critical fibre aspect ratio is proportional to the square root of the ratio of fibre to matrix elastic modulus, as predicted by Cox. However, two linear relationships are established: the first corresponds to the thermosetting and thermoplastic matrices, while the second corresponds to the elastomeric matrices. The difference between these two kinds of materials is attributed to the great difference in polymer chain mobility as shown by a study of the temperature dependence ofI c/d, particularly in the glass transition temperature zone of the matrices. However, in the case of elastomeric materials, the existence of an interphase layer between the fibre and the matrix, having an elastic modulus close to that of the elastomer in its glassy state, can also explain this particular behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kelly andW. R. Tyson,J. Mech. Phys. Solids 13 (1965) 329.

    Google Scholar 

  2. H. L. Cox,Br. J. Appl. Phys. 3 (1952) 72.

    Google Scholar 

  3. A. S. Carrara andF. J. McGarry,J. Compos. Mater. 2 (1968) 222.

    Google Scholar 

  4. Y. Termonia,J. Mater. Sci. 22 (1987) 504.

    Google Scholar 

  5. G. S. Holister andC. Thomas, in “Fibre Reinforced Materials” (Elsevier, Amsterdam, London, New York, 1966) Ch. 2, p. 14.

    Google Scholar 

  6. C. Galiotis, R. J. Young, P. H. J. Yeung andD. N. Batchelder,J. Mater. Sci. 19 (1984) 3640.

    Google Scholar 

  7. A. Kelly andG. Davies,Metall. Rev. 10 (1965) 1.

    Google Scholar 

  8. W. A. Fraser, F. H. Ancker andA. T. Di Benedetto, in Proceedings of the 30th Annual Technical Conference, SPI/Reinforced Plastics — Composite Institute, Washington (1975) Section 22-A.

    Google Scholar 

  9. A. T. Dibenedetto andL. Nicolais,Plast. 10 (1979) 83.

    Google Scholar 

  10. H. Simon, Ph.D. thesis, Université de Haute-Alsace, Mulhouse, France (1984).

    Google Scholar 

  11. H. Simon, F. Bomo andJ. Schultz, in Proceedings of the European Plastics Conference, Paris, France (1982) IV (9), 1–5.

    Google Scholar 

  12. J. Schultz, L. Lavielle andC. Martin,J. Adhesion 23 (1987) 45.

    Google Scholar 

  13. T. Ohsawa, A. Nakayama, M. Miwa andA. Hasegawa,J. Appl. Polym. Sci. 22 (1978) 3203.

    Google Scholar 

  14. J. M. Robinson, R. J. Young, C. Galiotis andD. N. Batchelder,J. Mater. Sci. 22 (1987) 3642.

    Google Scholar 

  15. J. Schultz, L. Lavielle andH. Simon, in Proceedings of the International Symposium, “Science and New Applications of Carbon Fibres”, Toyohashi, Japan, November (Toyohashi University of Technology, 1984) p. 125.

  16. G. Guilpain andJ. B. Donnet, personal communications (1987).

  17. L. T. Drzal, M. J. Rich andP. F. Lloyd,J. Adhesion 16 (1982) 1.

    Google Scholar 

  18. L. T. Drzal, M. J. Rich, M. F. Koenig andP. F. Lloyd,ibid. 16 (1983) 133.

    Google Scholar 

  19. L. Ongchin, W. K. Olender andF. H. Ancker, in Proceedings of the 27th Annual Technical Conference, SPI/Reinforced Plastics — Composite Institute, Washington (1972) Section 11-A.

    Google Scholar 

  20. M. Xie, PhD thesis, Institut National des Sciences Appliquées, Lyon, France (1987).

    Google Scholar 

  21. M. J. Folkes andW. K. Wong,Polymer 28 (1987) 1309.

    Google Scholar 

  22. F. Bomo, PhD thesis, Université de Haute-Alsace, Mulhouse, France (1983).

    Google Scholar 

  23. C. Saint-Flour andE. Papirer,Ind. Eng. Chem. Prod. Res. Dev. 21 (1982) 666.

    Google Scholar 

  24. F. M. Fowkes,J. Adhesion Sci. Tech. 1 (1987) 7.

    Google Scholar 

  25. A. N. Gent andJ. Schultz,J. Adhesion 3 (1972) 281.

    Google Scholar 

  26. E. H. Andrews andA. J. Kinloch,Proc. Roy. Soc. A332 (1973) 385.

    Google Scholar 

  27. C. E. Blades, in “Handbook of Adhesives”, edited by I. Skeist (Van Nostrand Reinholt, New York, 1977) p. 484.

    Google Scholar 

  28. J. D. Domine andR. H. Schaufelberger,ibid.in “, p. 495.

    Google Scholar 

  29. M. Ilavsky andJ. Hasa,J. Polym. Sci. Polym. Phys. Ed. 11 (1973) 539.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asloun, E.M., Nardin, M. & Schultz, J. Stress transfer in single-fibre composites: effect of adhesion, elastic modulus of fibre and matrix, and polymer chain mobility. J Mater Sci 24, 1835–1844 (1989). https://doi.org/10.1007/BF01105713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01105713

Keywords

Navigation