Skip to main content
Log in

Alumina fused cast refractory aging monitored by nickel crystal chemistry

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aged bricks of AZS and mixed α-β-alumina refractories have been sampled in superstructures of glass making furnaces. α- and β-alumina phases contained in these refractories have been investigated by optical absorption spectroscopy, electron paramagnetic resonance, and electron probe microanalysis. On the side of the brick exposed to the tank atmosphere, β-alumina is the only phase present. The primary corundum grains are transformed into secondary β-alumina under the influence of contaminants from raw materials and oil ashes. The temperature conditions existing in the furnace preclude the formation of β” alumina. The bright blue color of β-alumina originates from the presence of tetrahedral Ni2+ in Al(2) sites, with no evidence for nickel atoms located in the ionic conduction band. By considering the chemical composition of β-alumina, spectroscopic results are consistent with a mutual interaction between divalent and monovalent species during cation diffusion. Indeed, the small divalent cations such as Ni are located in the spinel block and the larger alkali cations play a charge compensation role in the conduction band. As other divalent cations of small ionic radius, nickel hence helps to stabilize β-alumina, which maintains the refractory performance during furnace operation. The spectroscopic evidence of trace amounts of nickel (<100 ppm) in secondary corundum crystals means that this phase formed at the expense of β-alumina inside the high-alumina refractory brick. By considering the diffusion coefficients of Ni2+ in α- and β-alumina, this indicates a fast contamination of the material at an early stage of the furnace history. The formation of a permanent deep layer of primary and secondary corundum has protected the inner part of the refractory brick from further contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Busby, Mater. Res. Soc. Bull. XIV (11), 45 (1989).

    Article  Google Scholar 

  2. E. A. Thomas, J. Can. Ceram. Soc. 44 (1), 37 (1975).

    CAS  Google Scholar 

  3. G. C. Farrington and B. Dunn, Solid State Ionics 7 (2), 267 (1982).

    Article  CAS  Google Scholar 

  4. L.G. Huggett, Trans. Br. Ceram. Soc. 80 (1), 11 (1981).

    CAS  Google Scholar 

  5. B.D. Cervelle and M. Maquet, Clay Mineral. 17 (2), 377 (1982); A. Manceau and G. Calas, Am. Mineral. 70 (3), 549 (1985).

    Google Scholar 

  6. A. Manceau, A. Decarreau, and G. Calas, Clay Mineral. 20 (2), 367 (1985).

    Article  CAS  Google Scholar 

  7. W. W. M. Wendlandt and H. G. Hecht, Reflectance Spectroscopy (Interscience Publishers, 1966).

  8. G. Calas, Rev. Mineral. 18, 513 (1988).

    CAS  Google Scholar 

  9. L. Galoisy and G. Calas, submitted.

  10. D. S. McClure, J. Chem. Phys. 36 (4), 2757 (1962).

    Article  CAS  Google Scholar 

  11. T. Sakurai, M. Ishigame, and H. Arashi, J. Chem. Phys. 50 (8), 3241 (1969); O. Schmitz-Dumont, A. Lule, and D. Reinen, Ber. Bunsenges. Phys. Chem. 69 (1), 76 (1964).

    Google Scholar 

  12. L. Galoisy and G. Calas, Am. Mineral, (submitted).

  13. J.R. Akridge and J.H. Kennedy, J. Solid State Chem. 25 (1), 169 (1978).

    Article  CAS  Google Scholar 

  14. H.K. Mao and P.M. Bell, Geochim. Cosmochim. Acta 39 (3), 865 (1975).

    Article  CAS  Google Scholar 

  15. R. Stevens and J.G.P. Binner, J. Mater. Sci. 19 (3), 695 (1984).

    Article  CAS  Google Scholar 

  16. R. G. Burns, Mineralogical Applications of Crystal Field Theory (Cambridge University Press, 1970).

  17. I.D. Brown, Acta Cryst. B44 (3), 545 (1988).

  18. J. D. Barrie, B. Dunn, O. M. Stafsudd, and G. C. Farrington, Solid State Ionics 18–19, 677 (1986).

    Article  Google Scholar 

  19. R. Pappalardo, D.L. Wood, and R.C. Linares, J. Chem. Phys. 35 (6), 2041 (1961).

    Article  CAS  Google Scholar 

  20. D. R. White, S. Chen, H. R. Harrison, and H. Sato, Solid State Ionics 9–10, 255 (1983).

    Article  Google Scholar 

  21. C.R. Peters, M. Bettman, J. W. Moore, and M.D. Glick, Acta Cryst. B27, 1826 (1971).

    Article  Google Scholar 

  22. P. D. Dernier and J. P. Remeika, J. Solid State Chem. 17 (2), 245 (1976).

    Article  CAS  Google Scholar 

  23. W. L. Roth, Trans. Am. Cryst. Assoc. 11, 51 (1975).

    CAS  Google Scholar 

  24. D. R. White, S. Chen, M. Sankararaman, and H. Sato, Solid State Ionics 18–19, 608 (1986).

    Article  Google Scholar 

  25. R. C. DeVries and W. L. Roth, J. Am. Ceram. Soc. 52, 364 (1969).

    Article  CAS  Google Scholar 

  26. R. Freer, J. Mater. Sci. 15 (4), 803 (1980); J.T. Kummer, Prog. Solid State Chem. 7 (1), 141 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galoisy, L., Calas, G. & Maquet, M. Alumina fused cast refractory aging monitored by nickel crystal chemistry. Journal of Materials Research 6, 2434–2441 (1991). https://doi.org/10.1557/JMR.1991.2434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1991.2434

Navigation