Skip to main content
Log in

Self-diffusion and impurity diffusion in oxides

  • Bibliography
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An updated bibliography of diffusion data in oxides is provided for the materials scientist who requires a convenient source of published results. The scope of the review has been enlarged to include data for the diffusion of the host and impurity species in both binary and multiple oxides. Brief descriptions of terminology, diffusional behaviour and new measurement techniques are followed by tables of selected results and associated experimental details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

General References

  1. P. J. Harrop, J. Mater. Sci. 3 (1968) 206.

    Google Scholar 

  2. J. B. Wagner, “Atomic Diffusion in Semiconductors”, edited by D. Shaw, (Plenum, New York, 1973) p. 543.

    Google Scholar 

  3. A. Atkinson and R. I. Taylor, J. Mater. Sci. 13 (1978) 427.

    Google Scholar 

  4. B. Burton and G. L. Reynolds, ibid 13 (1978) 219.

    Google Scholar 

  5. A. J. Moulson, W. R. Phillips and P. Popper, “Special Ceramics, 1964”, edited by P. Popper (Academic Press, London, 1965) p. 199.

    Google Scholar 

  6. C. R. A. Catlow, J. Corish, K. M. Diller, P. W. M. Jacobs and M. J. Norgett, J. Phys. C. Solid State Phys. 12 (1979) 451.

    Google Scholar 

  7. B. J. Wuensch, W. C. Steele and T. Vasilos, J. Chem. Phys. 58 (1973) 5258.

    Google Scholar 

  8. P. Shewmon, “Diffusion in Solids” (McGraw-Hill, New York, 1963) 203pp.

    Google Scholar 

  9. N. L. Peterson, “Solid State Physics”, Vol. 22, Edited by F. Seitz, D. Turnbull and H. Ehrenreich (Academic Press, New York, 1968) p. 409.

    Google Scholar 

  10. N. L. Peterson and W. K. Chen, “Mass Transport Phenomena in Ceramics”, edited by A. R. Cooper and A. H. Heuer (Plenum, New York, 1975) p.41.

    Google Scholar 

  11. G. C. T. Wei and B. J. Wuensch, J. Amer. Ceram. Soc. 59 (1976) 295.

    Google Scholar 

  12. L. S. Darken, Trans. Met. Soc. AIME 175 (1948) 184.

    Google Scholar 

  13. J. M. Wimmer, R. N. Blumenthal and I. Bransky, J. Phys. Chem. Solids 36 (1975) 269.

    Google Scholar 

  14. B. C. Harding and D. M. Price, Phil. Mag. 26 (1972) 253.

    Google Scholar 

  15. P. Hembree and J. B. Wagner, Trans. Met. Soc. AIME 245 (1969) 1547.

    Google Scholar 

  16. R. Dieckmann and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 81 (1977) 344.

    Google Scholar 

  17. F. H. Wohlbier, (Ed.) “Diffusion and Defect Data” (Diffusion Information Center, Cleveland, Ohio): Vol. 2 (1968) pp. 93, 234, 403; Vol. 3, (1969) pp. 99, 241, 546; Vol. 4, (1970) p. 151.

    Google Scholar 

  18. D. J. Reed, B. J. Wuensch and H. K. Bowen, “Research in Materials”, Annual Report, M.I.T. (1978) p. 241.

  19. A. Atkinson and R. I. Taylor, Thin Solid Films 46 (1977) 291.

    Google Scholar 

  20. N. N. Greenwood and A. T. Howe, J.C.S. Dalton Trans. 1 (1972) 122.

    Google Scholar 

  21. R. Dieckmann, T. O. Mason, J. D. Hodge and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 82 (1978) 778.

    Google Scholar 

  22. B. J. Wuensch and T. Vasilos, J. Chem. Phys. 36 (1962) 2917.

    Google Scholar 

  23. J. Rungis and A. J. Mortlock, Phil. Mag. 14 (1966) 821.

    Google Scholar 

  24. B. C. Harding and A. J. Mortlock, J. Chem. Phys. 45 (1966) 2699.

    Google Scholar 

  25. A. J. Mortlock and D. M. Price, ibid 58 (1973) 634.

    Google Scholar 

  26. W. Crow, Thesis, Ohio State University (1969), University Microfilms 70-14 000 (known through [2]).

  27. J. Askill, “Tracer Diffusion Data for Metals, Alloys and Simple Oxides” (I.F.I. Plenum, New York, 1970).

    Google Scholar 

Al2O3

  1. W. Fiedler and O. Bobleter, Atomkernenergie 13 (1968) 57; Diffusion Data 2 B19.

    Google Scholar 

  2. G. H. Frischat, Ber. Deut. Keram. Ges. 48 (1971) 441 (in German).

    Google Scholar 

  3. V. I. Izvekov and K. M. Gorbunova, Fiz. Metal, i Metalloved Akad. Nauk. SSSR 7 (1959) 713 (in Russian); Chem. Abs. 54, 10743.

    Google Scholar 

  4. H. W. Hennicke and H. H. Sturhahn, Tonindustrie Ztg. Keram Rundsch. 95 (1971) 127; Chem Abs. 75, 39884.

    Google Scholar 

  5. Y. Oishi, K. Ando and K. Matsuhiro, Yogyo Kyokai Shi 85, (1977) 522; Chem. Abs. 87, 173090.

    Google Scholar 

  6. D. J. Reed, B. J. Wuensch and H. K. Bowen, “Research in Materials”, Annual Report M.I.T. (1978) p. 241.

  7. O. Bobleter, W. Fiedler and F. Grass, Atomkernenergie 10 (1965) 261 (in German); Chem. Abs. 66, 51446v.

    Google Scholar 

  8. J. B. Wagner, “Defects and Transport in Oxides”, edited by M. S. Seltzer and R. I. Jaffe (Plenum, New York, 1974) p. 283.

    Google Scholar 

B2O3

  1. A. I. Grigor'ev and D. I. Polishchuk, Fiz. Aerodispersnykh Sist. 8 (1973) 87; Diffusion Data 10, E159.

    Google Scholar 

BaO

  1. S. P. Murarka and R. A. Swalin, J. Phys. Chem. Solids. 32 (1971) 2015.

    Google Scholar 

BeO

  1. C. F. Cline, H. W. Newkirk, W. L. Barmore and R. R. Vandervoort, J. Amer. Ceram. Soc. 50 (1967) 221.

    Google Scholar 

  2. H. J. de Bruin, J. Aust. Inst. Met. 14 (1969) 247.

    Google Scholar 

  3. M. Bloser, D. Rohrig and R. Hecker, Nukleonik 10 (1967) 64 (in German); Diffusion Data 2, B17.

    Google Scholar 

  4. D. H. Bradhurst and H. J. de Bruin, J. Aust. Ceramic Soc. 5 (1969) 21.

    Google Scholar 

CaO

  1. V. Kumar and Y. P. Gupta, J. Phys. Chem. Solids 30 (1969) 677.

    Google Scholar 

CeO2

  1. I. V. Vinokurov, Izv. Adad. Nauk. SSSR Neorg. Mater 6 (1970) 31 (in Russian); Diffusion Data 4, D94.

    Google Scholar 

  2. B. C. Steele and J. M. Floyd, Proc. Brit. Ceram Soc. 19 (1971) 179.

    Google Scholar 

CoO

  1. W. B. Crow, Thesis, Ohio State University (1969) 81pp; University Microfilms 70-14 000.

  2. W. K. Chen, N. L. Peterson and W. T. Reeves, Phys. Rev. 186 (1969) 887.

    Google Scholar 

  3. W. K. Chen and N. L. Peterson, J. Phys. Chem. Solids 34 (1973) 1093.

    Google Scholar 

  4. F. Morin, Canad. Met. Q. 14 (1975) 105 (in French); Chem. Abs. 83, 121051.

    Google Scholar 

  5. S. Mrowec and K. Przbyski, “Reactivity of Solids (Proceedings Eighth International Symposium)”, edited by J. Wood, O. Lindquist, C. Helgesson and N. G. Vannerberg (1976) p. 177.

  6. R. Dieckmann, Z. Phys. Chem. (Wiesbaden) 107 (1977) 198; Chem Abs. 89, 136056.

    Google Scholar 

  7. S. F. Rahman and M. F. Berard, J. Amer. Ceram Soc. 60 (1977) 67.

    Google Scholar 

  8. W. K. Chen and N. L. Peterson, J. Phys. Chem. Solids 34 (1973) 1093.

    Google Scholar 

  9. W. K. Chen and R. A. Jackson, ibid 30 (1969) 1309.

    Google Scholar 

  10. R. H. Chang, W. Stewart and J. B. Wagner, “Reactivity of Solids (Proceedongs Seventh International Conference)” edited by J. J. Anderson, M. W. Roberts and F. S. Stone (Chapman and Hall, London, 1972) p. 231.

    Google Scholar 

  11. J. M. Wimmer, R. N. Blumenthal and I. Bransky, J. Phys. Chem. Solids 36 (1975) 296.

    Google Scholar 

Cr2O3

  1. D. R. Kinloch III, Thesis, University of Delaware (1970) 206pp; University Microfilms 71-6442; C. E. Birchenall, private communication (1979).

  2. H. W. Hennicke and H. H. Sturhahn, Tonindustrie Ztg. Keram. Rundschau 95 (1971) 127; Chem. Abs. 75, 39884.

    Google Scholar 

  3. D. V. Ignatov, I. N. Belokurova and I. N. Belyanin, Izv. Akad. Nauk SSSR Moscow (1958) 326 (in Russian); see also US Atomic Energy Commission Report Np-tr-448 (1958) p. 256; Chem. Abs. 54, 10737.

  4. B. Burton and G. L. Reynolds, J. Mater Sci. 13 (1978) 219.

    Google Scholar 

  5. A. U. Seybolt, Trans. Met. Soc. AIME 242 (1968) 752.

    Google Scholar 

  6. J. B. Wagner, “Defects and Transport in Oxides”, edited by M. S. Seltzer and R. I. Jaffe (Plenum, New York, 1974) p. 283.

    Google Scholar 

Cu2O

  1. A. I. Andrievskii, A. V. Sandulova and M. I. Yurevich, Fiz. Tverd. Tela 2 (1960) 624 (in Russian); see also Sov. Phys. Solid State (English translation) 2 (1960) 581; Chem Abs. 55, 7965a.

    Google Scholar 

  2. S. Mrowec and A. Stoklosa, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 18 (1970) 523; Diffusion Data 5, D19.

    Google Scholar 

  3. E. Iguchi, K. Yajima and Y. Sato, J. Crystal Growth 24–25 (1974) 572.

    Google Scholar 

  4. W. J. Tomlinson and J. Yates, J Phys. Chem. Solids 38 (1977) 1205.

    Google Scholar 

  5. A. V. Sandulova, M. I. Dronyuk, V. M. Rybak and K. S. Shcherbai, Ukr. Fiz. Zh. 7 (1962) 289 (in Russian); Chem. Abs. 57, 9239c.

    Google Scholar 

  6. A. V. Sandulova and A. I. Andrievskii, Radio Eng. Electron. Phys. (USSR) 12 (1956) 1492; (known through general reference [2]: J. B. WAGNER, p. 599, ref. 124).

    Google Scholar 

  7. A. V. Sandulova and Y. C. Chang, Fiz Tverd. Tela 2 (1960) 847 (in Russian) Chem. Abs. 55, 12973i.

    Google Scholar 

Dy2O3

  1. M. F. Berard, C. D. Wirkus and D. R. Wilder, J. Amer. Ceram. Soc. 51 (1968) 643.

    Google Scholar 

Er2O3

  1. M. F. Berard and D. R. Wilder, J. Amer. Ceram. Soc. 52 (1969) 85.

    Google Scholar 

  2. W. F. Schiavi, Thesis, Iowa State University (1976); (known through reference [45]: R. W. Scheidecker and M. F. Berard, p. 402, ref. 6).

  3. R. W. Scheidecker and M. F. Berard, J. Amer. Ceram. Soc. 61 (1978) 399.

    Google Scholar 

  4. M. F. Berard, C. D. Wirkus and D. R. Wilder, ibid. 51 (1968) 643.

    Google Scholar 

FeO

  1. P. Hembree and J. B. Wagner, Trans. Met. Soc. AIME 245 (1969) 1547.

    Google Scholar 

  2. P. M. Valov, Ya V. Vasil'ev, G. V. Veriovkin and D. F. Kaplin, J. Solid State Chem. 1 (1970) 215.

    Google Scholar 

  3. N. N. Greenwood and A. T. Howe, J. Chem. Soc. Dalton Trans. 1 (1972) 122.

    Google Scholar 

  4. W. K. Chen and N. L. Peterson, J. Phys. (Paris) 34 (1973) C9–303; Diffusion Data 10, E198.

    Google Scholar 

  5. H. R. Anand and J. G. Mullen, Phys. Rev. B8 (1973) 3112.

    Google Scholar 

  6. R. H. Campbell, Thesis Arizona State University (1969) 95pp; University Microfilms 69-5710.

  7. G. J. W. Kor, Met. Trans. 3 (1972) 2343.

    Google Scholar 

  8. C. J. Fujii and R. A. Meussner, Rep. Nov. Res. Lab. Prog. March (1967) 27; N.R.C. Problem No. M 01–12.

Fe2O3

  1. R. H. Chang and J. B. Wagner, J. Amer. Ceram. Soc. 55 (1972) 211.

    Google Scholar 

  2. J. B. Wagner, “Defects and transports in Oxides”, edited by M. S. Seltzer and R. I. Jaffe (Plenum, New York, 1974) p. 283.

    Google Scholar 

Fe3O4

  1. R. Dieckmann, T. O. Mason, J. D. Hodge and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 82 (1978) 778.

    Google Scholar 

  2. R. Dieckmann and H. Schmalzried, ibid 81 (1977) 344.

    Google Scholar 

  3. D. Groman and V. Jesenak, Silikaty 22 (1978) 317; Chem Abs. 90, 110158y.

    Google Scholar 

  4. J. E. Castle and P. L. Surman, J. Phys. Chem. 71 (1967) 4255.

    Google Scholar 

  5. Idem, ibid 73 (1969) 632.

    Google Scholar 

  6. R. Freer and Z. Hauptman, Phys. Earth Planet. Interiors 16 (1978) 223.

    Google Scholar 

Gd2O3

  1. C. D. Wirkus, M. F. Berard and D. R. Wilder, J. Amer. Ceram Soc. 52 (1969) 456.

    Google Scholar 

Ho2O3

  1. M. F. Berard, C. D. Wirkus and D. R. Wilder, ibid 51 (1968) 643.

    Google Scholar 

Lu2O3

  1. Idem, ibid 51 (1968) 643.

    Google Scholar 

MgO

  1. B. C. Harding, Phys. Stat. Sol. B50 (1972) 135.

    Google Scholar 

  2. Idem, Phil. Mag. 27 (1973) 481.

    Google Scholar 

  3. J. Rungis and A. J. Mortlock, ibid 14 (1966) 821.

    Google Scholar 

  4. B. J. Wuensch and T. Vasilos, Natl. Bur. Stand. (US) Spec. Publ. (1967) no. 296 (1968) 95; Diffusion Data 4, D2.

    Google Scholar 

  5. B. C. Harding, Phys. Stat. Sol B56 (1973) 645.

    Google Scholar 

  6. B. C. Harding and V. K. Bhalla, Phil. Mag. 24 (1971) 485.

    Google Scholar 

  7. B. J. Wuensch and T. Vasilos, J. Chem. Phys. 36 (1962) 2917.

    Google Scholar 

  8. H. Tagai, S. Iwai, T. Iseki and M. Saho, Radex Rundschau 4 (1965) 577.

    Google Scholar 

  9. G. W. Weber, W. R. Bitler and V. S. Stubican, J. Amer. Ceram. Soc. 60 (1977) 61.

    Google Scholar 

  10. G. Katz, S. Kachi and R. Roy, Jap. J. Appl. Phys. 8 (1969) 429; Ceram. Abs. (1970) 128b.

    Google Scholar 

  11. B. C. Harding, Phys. Stat. Sol. B56 (1973) 645.

    Google Scholar 

  12. B. C. Harding and D. M. Price, Phil. Mag. 26 (1972) 253.

    Google Scholar 

  13. B. J. Wuensch, W. C. Steele and T. Vasilos, J. Chem. Phys. 58 (1973) 5258.

    Google Scholar 

  14. R. A. Weeks and A. Chatelain, J. Amer. Ceram. Soc. 61 (1978) 297.

    Google Scholar 

  15. J. Mimkes and M. Wuttig, ibid 54 (1971) 65.

    Google Scholar 

  16. B. J. Wuensch and T. Vasilos, J. Chem. Phys. 54 (1971) 1123.

    Google Scholar 

  17. H. Hashimoto, M. Hama and S. Shirasaki, J. Appl. Phys. 43 (1972) 4828.

    Google Scholar 

  18. S. Shirasaki and M. Hama, Chem Phys. Letters 20 (1973) 361.

    Google Scholar 

  19. T. Solaga and A. J. Mortlock, Phys. Stat. Sol. A3 (9170) 247K.

  20. T. Solaga, M. Sc. thesis, Australian National University, Canberra; (known through reference [84]: T. Solaga and A. J. Mortlock, p. 250K).

  21. A. J. Mortlock and D. M. Price, J. Chem. Phys. 58 (1973) 634.

    Google Scholar 

  22. M. F. Berard, J. Amer. Ceram. Soc. 54 (1971) 58.

    Google Scholar 

MnO

  1. J. B. Price and J. B. Wagner, J. Electrochem. Soc. 117 (1970) 242.

    Google Scholar 

MoO3

  1. V. P. Elyutin, T. G. Lenskaya, Yu. A. Pavlov and V. P. Polyakov Dokl. Akad. Nauk. SSSR (Tech. Phys.) 199 (1971) 62; Diffusion Data 6, D56.

    Google Scholar 

  2. Yu. A. Pavlov, V. P. Polyakov, Yu. S. Skrobut, G. Ya. Meshcheryakov and E. Yu. Zamalin, Izv. Vyssh. Uchebn. Zaved., Chem. Metall 5 (1975) 26; Diffusion Data 13, 126.

    Google Scholar 

Nb2O5

  1. J. S. Sheasby and B. Cox, J. Less-Common Metals 15 (1968) 129.

    Google Scholar 

  2. J. S. Sheasby, W. W. Smeltzer and A. E. Jenkins, J. Electrochem. Soc. 115 (1968) 338.

    Google Scholar 

  3. V. P. Elyutin, T. G. Lenskaya, Yu. A. Pavlov and V. P. Polyakov, Dokl. Akad. Nauk. SSSR (Tech. Phys.) 199 (1971) 62; Diffusion Data 6, D56.

    Google Scholar 

  4. Y. Massiani, J. P. Crousier and R. Streiff, C.R. Hebd. Seances Acad. Sci. Ser. C. 282 (1976) 567; Diffusion Data 14, 129.

    Google Scholar 

  5. Y. Massiani, J. P. Crousier and R. Streiff, J. Solid State Chem. 23 (1978) 415.

    Google Scholar 

Nd2O3

  1. G. D. Stone, Thesis, Arizona State University (1968); University Microfilm 68–6807; Diffusion Data 3, D41.

NiO

  1. W. B. Crow, Thesis, Ohio State University (1969) 81pp; University Microfilms 70-14 000.

  2. W. K. Chen and N. L. Peterson, J. Phys. Chem. Solids 33 (1972) 881.

    Google Scholar 

  3. J. B. Wagner, in “Defects and transport in oxides”, edited by M. S. Seltzer and R. I. Jaffe (Plenum, New York, 1974) p. 283.

    Google Scholar 

  4. M. S. Seltzer, J. Electrochem. Soc. 118 (1971) 802.

    Google Scholar 

  5. W. K. Chen, N. L. Peterson and L. C. Robinson, J. Phys. Chem. Solids 34 (1973) 705.

    Google Scholar 

  6. R. A. Perkins and R. A. Rapp, Met. Trans. 4 (1973) 193.

    Google Scholar 

  7. W. D. Stewart and J. B. Wagner, J. Electro-Chem. Soc. 122 (1975) 570.

    Google Scholar 

  8. R. Morlotti, Z. Naturforsch. 24A (1969) 441; Diffusion Data 3, D58.

    Google Scholar 

  9. M. L. Volpe and J. Reddy, J Chem. Phys. 53 (1970) 1117.

    Google Scholar 

  10. M. J. Graham, D. Caplan and M. Cohen, J. Electrochem. Soc. 119 (1972) 1265.

    Google Scholar 

  11. S. M. Klotsman, A. N. Timofeev and I. S. Trakhtenberg, Fiz. Tverd. Tela 14 (1972) 894; Diffusion Data 7, 82.

    Google Scholar 

  12. Y. Ikeda and K. Nii, Trans. Jap. Inst. Met. 15 (1974) 441; Diffusion Data 12, 180.

    Google Scholar 

  13. J. D. Christian and W. P. Gilbreath, Oxid. Met. 9 (1975) 1.

    Google Scholar 

  14. A. Atkinson and R. I. Taylor, J. Mater. Sci. 13 (1978) 427.

    Google Scholar 

  15. C. Monty, C. Dubois, R. Taylon and S. Barbezat, Colloq. Metall 19 (1976) (Diffus. Milieux Condens: Theor. Appl. 2) 813 (in French); Chem. Abs. 89, 11805w.

    Google Scholar 

  16. R. A. Chang, W. Stewart and J. B. Wagner, in “Reactivity of Solids (Proceedings Seventh International Conference)”, edited by J. J. Anderson, M. W. Roberts and F. S. Stone (Chapman and Hall, London, 1972) p. 231.

    Google Scholar 

  17. D. R. Chang, R. Nemoto and J. B. Wagner, Met. Trans. 7A (1976) 803.

    Google Scholar 

  18. H. Y. Howng and J. B. Wagner, J. Phys. Chem. Solids 39 (1978) 1019.

    Google Scholar 

  19. J. Deren, Z. M. Jarzebski, S. Mrowec and T. Walec, Bull. Akad. Pol. Sci. Ser. Sci. Chem. 19 (1971) 153.

    Google Scholar 

  20. J. Nowotny and J. B. Wagner, J. Amer. Ceram. Soc. 56 (1973) 397.

    Google Scholar 

  21. J. Nowotny and A. Sadowski, ibid 62 (1979) 24.

    Google Scholar 

PbO

  1. L. Heyne, N. M. Beekmans and A. de Beer, J. Electrochem. Soc. 119 (1972) 77.

    Google Scholar 

Pr7O12

  1. G. R. Weber and L. Eyring, Ad. Chem. Phys. 21 (1971) 253.

    Google Scholar 

  2. K. H. Lau and L. Eyring, Proceedings of the 10th Rare Earth Research Conference (CONF — 730402 — PL) edited by C. J. Kevane and T. Moeller, (NTIS; Springfield. Va., USA, 1973) p. 184.

    Google Scholar 

  3. K. H. Lau, D. L. Fox, S. H. Lin and L. Eyring, High Temp. Sci. 8 (1976) 129.

    Google Scholar 

PuO2

  1. R. L. Deaton and C. J. Wiedenheft, J. Inorg. Nucl. Chem. 35 (1973) 649.

    Google Scholar 

Sc2O3

  1. M. F. Berard, C. D. Wirkus and D. R. Wilder, J. Amer. Ceram. Soc. 51 (1968) 643.

    Google Scholar 

SiO2

  1. D. V. Morgan, M. J. Howes and C. J. Madams, J. Electrochem. Soc. 123 (1976) 295.

    Google Scholar 

  2. G. H. Frischat, Ber. Deut. Keram. Ges. 47 (1970) 364 (in German).

    Google Scholar 

  3. L. Rybach and F. Laves, Geochim. Cosmochim. Acta 31 (1967) 539.

    Google Scholar 

  4. G. H. Frischat, J Amer. Ceram. Soc, 53 (1970) 357.

    Google Scholar 

  5. Idem, Ber. Deut. Keram. Ges. 47 (1970) 238 (in German); Diffusion Data 4, D69.

    Google Scholar 

Sm2O3

  1. G. D. Stone, Thesis, Arizona State University (University Microfilms 68–6807); Diffusion Data 3, D41.

SrO

  1. S. P. Murarka and R. A. Swalin, J. Phys. Chem. Solids 32 (1971) 1277.

    Google Scholar 

Ta2O5

  1. V. P. Elyutin, T. G. Lenskaya, Yu. A. Pavlov and V. P. Polyakov, Dokl. Akad. Nauk. SSSR (Tech Phys.) 199 (1971) 62; Diffusion Data 6, D56.

    Google Scholar 

ThO2

  1. K. Ando, Y. Oishi and T. Hikada, J. Chem. Phys. 65 (1976) 2751.

    Google Scholar 

  2. C. K. Lam, U.T.I.A.S. Rep (1976) 212; Diffusion Data 17, 144.

  3. H. Furuya and S. Yajima, J. Nucl. Mater 25 (1968) 38.

    Google Scholar 

  4. R. J. Hawkins and C. B. Alcock, ibid 26 (1968) 112.

    Google Scholar 

  5. A. D. King, ibid 38 (1971) 347.

    Google Scholar 

  6. H. Furuya, ibid 26 (1968) 123.

    Google Scholar 

  7. H. Matzke, J. Phys. (Paris) 37 (1976) C7–452: Diffusion Data 16, 167.

    Google Scholar 

TiO

  1. T. S. Lundy, R. A. Padgett and M. D. Banus, Met. Trans. 4 (1973) 1179.

    Google Scholar 

TiO2

  1. A. Lutze-Birk, E. Wezranowski and M. Radwan, Arch. Elektrotech. 16 (1967) 807 (in Polish); Diffusion Data 3, D4.

    Google Scholar 

  2. V. I. Izuekov and K. M. Gorbunova, Fiz Metal. i Metalloved. 7 (1959) 713.

    Google Scholar 

  3. D. J. Derry, D. G. Lees and J. M. Calvert, Proc. Brit. Ceram. Soc. 19 (1971) 77.

    Google Scholar 

  4. V. P. Elyutin, T. G. Lenskaya, Yu. A. Pavlov and V. P. Polyakov, Dokl. Akad. Nauk. SSSR (Tech Phys.) 199 (1971) 62; Diffusion Data 6, D56.

    Google Scholar 

  5. T. B. Gruenwald and G. Gordon, J. Inorg. Nucl. Chem. 33 (1971) 1151.

    Google Scholar 

  6. A. N. Bagshaw and B. G. Hyde, J. Phys. Chem. Solids 37 (1976) 835.

    Google Scholar 

  7. J. F. Baumard, Solid State Commun. 20 (1976) 859.

    Google Scholar 

  8. D. A. Venkatu and L. E. Poteat, Mater Sci. Eng. 5 (1970) 258.

    Google Scholar 

  9. T. S. Lundy and W. A. Coghlan, J. Phys. Paris 34 (1973) C9–299.

    Google Scholar 

  10. K. Kitazawa, T. Kuriyama, K. Fueki and T. Mukaibo, J. Amer. Ceram. Soc. 60 (1977) 363.

    Google Scholar 

  11. J. R. Aske and H. B. Whitehurst, J. Phys. Chem Solids 39 (1978) 457.

    Google Scholar 

Tm2O3

  1. M. F. Berard, C. D. Wirkus and D. R. Wilder, J. Amer. Ceram. Soc. 51 (1968) 643.

    Google Scholar 

UO2

  1. F. Schmitz and R. Lindner, J. Nucl. Mater. 17 (1965) 259.

    Google Scholar 

  2. W. Dornelas and P. Lacombe, Compt. Rend. Acad. Sci. Paris Ser. C 265 (1967) 359 (in French); Diffusion Data 1, R30.

    Google Scholar 

  3. P. Contamin and R. Stefani, Commis. Energ. At. Rapp. 3179 (1967) 21pp, (in French); Diffusion Data 2, B9.

    Google Scholar 

  4. P. Contamin and G. Slodzian, Compt. Rend. Sci. Paris Ser. C 267 (1968) 805 (in French); Diffusion Data 3, D5.

    Google Scholar 

  5. J. T. Bittel, L. H. Sjodahl and J. F. White, J. Amer. Ceram. Soc. 52 (1969) 446.

    Google Scholar 

  6. J. F. Marin and P. Contamin, J. Nucl. Mater. 30 (1969) 16.

    Google Scholar 

  7. K. W. Lay, J. Amer. Ceram. Soc. 53 (1970) 369.

    Google Scholar 

  8. Z. Hadari, M. Kroupp and Y. Wolfson, J. Appl. Phys. 42 (1971) 534.

    Google Scholar 

  9. P. Contamin, J. J. Bacmann and J. F. Marin, J. Nucl. Mater. 42 (1972) 54.

    Google Scholar 

  10. A. Prodan and L. N. Cojocaru, ibid 52 (1974) 333.

    Google Scholar 

  11. G. E. Murch, D. H. Bradhurst and H. J. de Bruin, Phil, Mag. 32 (1975) 1141.

    Google Scholar 

  12. F. Schmitz and R. Lindner, Z. Naturforsch. 16a (1961) 1096.

    Google Scholar 

  13. J. F. Marin, H. Michaud and P. Contamin, Compt. Rend. Sci. Paris Ser. C 264 (1967) 1633 (in French); Diffusion Data 1, R70.

    Google Scholar 

  14. R. J. Hawkins and C. B. Alcock, J. Nucl. Mater. 26 (1968) 112.

    Google Scholar 

  15. D. K. Reimann and T. S. Lundy, ibid 28 (1968) 218.

    Google Scholar 

  16. Hj. Matzke, ibid 30 (1969) 26.

    Google Scholar 

  17. D. K. Reimann and T. S. Lundy, J. Amer. Ceram. Soc. 52 (1969) 511.

    Google Scholar 

  18. A. B. Austern and J. Belle, J. Nucl. Mater 3 (1961) 267.

    Google Scholar 

V2O5

  1. Yu. A. Pavlov, Yu. S. Skrobut, V. P. Polyakov, G. Yu. Meshcheryakov and E. Yu. Zamalin, Izv. Vyssh. Zaved. Chern Met. 7 (1972) 8.

    Google Scholar 

Y2O3

  1. M. F. Berard, C. D. Wirkus and D. R. Wilder, J. Amer. Ceram. Soc. 51 (1968) 643.

    Google Scholar 

  2. M. F. Berard and D. R. Wilder, ibid 52 (1969) 85.

    Google Scholar 

ZnO

  1. V. J. Norman, Aust. J. Chem. 22 (1969) 325.

    Google Scholar 

  2. F. W. Kleinlein and R. Helbig, Z. Phys. 266 (1974) 201; Diffusion Data 9, E148.

    Google Scholar 

  3. G. Mueller and R. Helbig, J Phys. Chem. Solids 32 (1971) 1971.

    Google Scholar 

  4. J. W. Hoffman and I. Lauder, Trans. Faraday Soc. 66 (1970) 2346.

    Google Scholar 

  5. R. Robin, A. R. Cooper and A. H. Heuer, J. Appl. Phys. 44 (1973) 3770.

    Google Scholar 

  6. G. P. Panasyuk, M. N. Danchevskaya and N. I. Kobozev, Zh. Fiz. Khim. 41 (1967) 691 (in Russian); Diffusion Data 1, R66.

    Google Scholar 

ZrO2

  1. J. Debuigne, Met. Corros Ind. 501 (1967) 186 (in French); Diffusion Data 2, B10.

    Google Scholar 

  2. A. Madeyski and W. W. Smeltzer, Mater Res. Bull. 3 (1968) 369.

    Google Scholar 

  3. C. J. Rosa and W. C. Hagel, J. Nucl. Mater 27 (1968) 12.

    Google Scholar 

  4. C. J. Rosa and W. C. Hagel, Trans. AIME 242 (1968) 1293.

    Google Scholar 

  5. D. J. Poulton and W. W. Smeltzer, J. Electrochem. Soc. 117 (1970) 378.

    Google Scholar 

  6. F. J. Kenesha and D. L. Douglass, Oxid. Metals 3 (1971) 1.

    Google Scholar 

BaTiO3

  1. A. G. Verduch and R. Lindner, Arkiv. Kemi. 5 (1953) 313; Chem. Abs. (1953) 7342F.

    Google Scholar 

  2. J. Doskocil and Z. Pospisil, Silikaty 16 (1972) 113; Diffusion Data 7, 84.

    Google Scholar 

CaFe2O4

  1. J. A. Hedvall, C. Brisi and R. Lindner, Arkiv. Kemi. 4 (1952) 377 (in German); Chem. Abs. (1953) 3072C.

    Google Scholar 

CaWO4

  1. E. V. Tkachenko, A. Ya. Neiman and L. A. Kuz'mina, Izv. Akad. Nauk. SSSR Neorg. Mater. 11 (1975) 1847; Diffusion Data 13, 113.

    Google Scholar 

  2. V. V. Vashuk and I. F. Kononyuk, Dokl. Akad. Nauk. B SSR 19 (1975) 1098; Diffusion Data 15, 180.

    Google Scholar 

CoAl2O4

  1. A. Morkel and H. Schmalzried, Z. Phys. Chem. (N.F.) 32 (1962) 76 (in German).

    Google Scholar 

CoCr2O4

  1. R. Sun, J. Chem. Phys. 28 (1958) 290.

    Google Scholar 

  2. A. Morkel and H. Schmalzried, Z. Phys. Chem. (N.F) 32 (1962) 76 (in German).

    Google Scholar 

CoFe2O4

  1. W. Muller and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 68 (1964) 270.

    Google Scholar 

  2. W. K. Chen and H. Downing, Phys. Stat Sol. A 37 (1976) 515.

    Google Scholar 

Co2TiO4

  1. A. Morkel and H. Schmalzried, Z. Phys. Chem. (N.F.) 32 (1962) 76.

    Google Scholar 

Fe2 (MoO4)3

  1. V. M. Zhukovskii, A. S. Zhukovskaya, V. N. Popova, Tr. Inst. Khim. Ural Nauchn. Tsentr. Akad. Nauk. SSSR 32 (1975) 9.

    Google Scholar 

LaFe2O3

  1. I. E. Shimanovich, M. M. Pavlyuchenko B. O. Filinov and S. A. Prokudina, Vesti. Akad. Navuk. B SSR Ser. Kim. Navuk. 6 (1969) 61.

    Google Scholar 

LiNbO3

  1. G. D. Boyd, R. V. Schmidt and F. F. Storz, J. Appl. Phys. 48 (1977) 2880.

    Google Scholar 

  2. V. I. Lapshin and A. P. Rumyantsev, Izv. Akad. Nauk. SSSR Neorg. Mater 12 (1976) 2199; Diffusion Data 15, 188.

    Google Scholar 

  3. P. J. Jorgensen and J. W Bartlett, Report no. Ad-686721 (1969) 38pp; Diffusion Data 4, D30.

  4. K. Sugii, M. Fukuma and H. Iwasaki, J. Mater. Sci. 13 (1978) 323.

    Google Scholar 

MgAl2O4

  1. V. S. Stubican, C. Greskovich and W. P. Whitney Mater Sci. Res. 6 (1972) 55.

    Google Scholar 

  2. R. Lindner and A. Akerstrom, Z. Phys. Chem. 18 (1958) 303 (in German).

    Google Scholar 

  3. K. Ando and Y. Oishi, Yogyo Kyokai, Shi. 80 (1972) 324; Diffusion Data 7, 216.

    Google Scholar 

  4. K. Ando and Y. Oishi, J. Chem. Phys. 61 (1974) 625.

    Google Scholar 

  5. Y. Oishi and K. Ando, ibid 63 (1975) 376.

    Google Scholar 

Mg2TiO4

  1. S. Shirasaki, I. Shindo, H. Haneda, M. Ogawa and K. Manabe, Chem. Phys. Lett. 50 (1977) 459.

    Google Scholar 

MnFe2O4

  1. Z. Simsa and J. Simsova Czech. J. Phys. 24 (1976) 439; Diffusion Data 10, E93.

    Google Scholar 

Na2WO4

  1. P. H. Bottelberghs and G. H. J. Broers, Electrochim. Acta 21 (1976) 719.

    Google Scholar 

NdFeO3

  1. M. M. Pavlyuchenko, B. O. Filonov, B. O. Shimanovich and S. A. Prokudina, Dokl. Akad. Nauk. B SSR 24 (1970) 328; Diffusion Data 4, D93.

    Google Scholar 

NiAl2O4

  1. I. N. Belokurova and D. V. Ignatov, Sov. J. At. Energy 4 (1958) 301; see English Trans. At. Energy 4 (1958) 399; Chem. Abs. 53, 11927i.

    Google Scholar 

  2. R. Lindner and A. Akerstrom, Z. Phys. Chem. 6 (1956) 162 (in German).

    Google Scholar 

  3. Idem, ibid 18 (1958) 303 (in German).

    Google Scholar 

NiCr2O4

  1. Idem, ibid 6 (1956) 162 (in German).

    Google Scholar 

  2. I. N. Belokurova and D. V. Ignatov, Sov. At. Energy 4 (1958) 301; see English Trans. At Energy 4 (1958) 399.

    Google Scholar 

  3. A. Morkel and H. Schmalzried, Z. Phys. Chem. (N.F.) 32 (1962) 76 (in German).

    Google Scholar 

  4. R. Lindner and R. Akerstrom, Z. Phys. Chem. 18 (1958) 303 (in German).

    Google Scholar 

  5. W. D. Kingery, D. C. Hill and R. P. Nelson, J. Amer. Ceram. Soc. 43 (1960) 473.

    Google Scholar 

NiFe2O4

  1. R. H. Condit, M. J. Brabers and C. E. Birchenall, Trans. Met. Soc. AIME 218 (1960) 768.

    Google Scholar 

  2. A. S. Lyashevich and I. F. Kononyuk, Vesti Akad. Navuk. BSSR Ser. Khim. Navuk. 3 (1977) 116; Diffusion Data 17, 132.

    Google Scholar 

  3. H. M. O'bryan and F. V. Dimarcello, J. Amer. Ceram. Soc. 53 (1970) 413.

    Google Scholar 

PbTiO3

  1. A. P. Lyubimov and A. A. Kalashnikov and B. Nuriddinov, Dokl. Akad. Nauk. Uzb. SSR 29 (1972) 24.

    Google Scholar 

SnZn2O4

  1. R. Lindner and O. Enqvist, Arkiv. Kemi. 9 (1956) 471; Chem Abs. 50, 15158i.

    Google Scholar 

SrTiO3

  1. A. E. Paldino, L. G. Rubin and J. S. Waugh, J. Phys. Chem. Solids 26 (1965) 391.

    Google Scholar 

  2. D. B. Schwarz and H. U. Anderson, J. Electrochem. Soc. 122 (1975) 707.

    Google Scholar 

  3. A. Yamaji, J. Amer. Ceram. Soc. 58 (1975) 152.

    Google Scholar 

  4. P. Turlier, P. Bussiere and M. Prettre, Compt. Rend. Acad. Sci. Paris 250 (1960) 1649.

    Google Scholar 

Y3Fe5O12

  1. A. E. Paldino, E. A. Maguire and L. G. Rubin, J. Amer. Ceram. Soc. 47 (1964) 280.

    Google Scholar 

  2. A. S. Lyashevich, I. E. Shimanovich, I. F. Kononyuk and M. B. Kosmyna, Zh. Fiz. Khim. 51 (1977) 2405; Diffusion Data 17, 124.

    Google Scholar 

ZnAl2O4

  1. R. Lindner and A. Akerstrom, Z. Phys. Chem. 6 (1956) 162 (in German).

    Google Scholar 

ZnCr2O4

  1. Idem, ibid 6 (1956) 162 (in German).

    Google Scholar 

ZnFe2O4

  1. R. Lindner, Arkiv. Kemi. 4 (1952) 381 (in German).

    Google Scholar 

  2. Idem, Acta. Chem Scand. 6 (1952) 457 (in German).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freer, R. Self-diffusion and impurity diffusion in oxides. J Mater Sci 15, 803–824 (1980). https://doi.org/10.1007/BF00552089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552089

Keywords

Navigation