Skip to main content
Log in

Possible behavior of a diamond (111) surface in methane/hydrogen systems

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A combined numerical and experimental investigation into the behavior of diamond (111) surfaces in plasma CVD reactors is presented. Numerically, semiempirical molecular orbital methods are used as a model of diamond (111) surfaces represented by a 20-atom carbon cluster plus surface species. The abstraction of hydrogen atoms by gas-phase hydrogen atoms, the coverage dependence of the heat of formation for submonolayers of CH3 and C2H groups coadsorbed with H, and the energy change for abstraction of H atoms from the surface by various radicals in the gas phase are examined. No barrier to abstraction is found, steric effects in achieving clusters of CH3 groups are large, and C2H and atomic oxygen are found to be the most energetically favored for removal of adsorbed H. Experimentally, relative concentrations of atomic H in the near-surface region as a function of added O2 mole fraction were measured. A weak dependence on O2 concentration is observed, but does not appear to be significant enough to account for observed changes in growth rate. This suggests that other radical species be investigated for their contribution to diamond film growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Frenklach, J. Appl. Phys. 65, 5142 (1989).

    Article  CAS  Google Scholar 

  2. M. Frenklach and K.E. Spear, J. Mater. Res. 3, 133 (1988).

    Article  CAS  Google Scholar 

  3. B. B. Pate, Surf. Sci. 165, 83 (1986).

    Article  CAS  Google Scholar 

  4. D. Vanderbilt and S. G. Louie, Phys. Rev. B 29, 7099 (1984).

    Article  CAS  Google Scholar 

  5. K. C. Pandey, Phys. Rev. B 25, 4338 (1982).

    Article  CAS  Google Scholar 

  6. M. Tsuda, M. Nakajima, and S. Oikawa, J. Am. Chem. Soc. 108, 5780 (1986); Jpn. J. Appl. Phys. 26, L527 (1987).

    CAS  Google Scholar 

  7. D. Huang, M. Frenklach, and M. Maroncelli, J. Phys. Chem. 92, 6379 (1988).

    Article  CAS  Google Scholar 

  8. R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc. 97, 1285 (1975).

    Article  CAS  Google Scholar 

  9. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4907 (1977).

    Article  CAS  Google Scholar 

  10. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. P. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985).

    Article  CAS  Google Scholar 

  11. M. J. S. Dewar and D. M. Storch, J. Am. Chem. Soc. 107, 3898 (1977).

    Article  Google Scholar 

  12. C.C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).

    Article  CAS  Google Scholar 

  13. G. G. Hall, Proc. R. Soc. London, Ser. A 205, 541 (1951).

    Article  CAS  Google Scholar 

  14. Quantum Chemistry Program Exchange (Chemistry Department, Indiana University), QCPE program 506.

  15. J.W. Coburn and M. Chen, J. Appl. Phys. 51, 3134 (1980).

    Article  CAS  Google Scholar 

  16. S. J. Harris and A. M. Weiner, “Methyl and H Atom Concentrations during Diamond Growth,” submitted; Appl. Phys. Lett. 55, 2179 (1989).

    CAS  Google Scholar 

  17. J. A. Mucha, D. L. Flamm, and D. E. Ibbotson, J. Appl. Phys. 65, 3448 (1989); also C-P. Chang, D.L. Flamm, D.E. Ibbotson, and J. A. Mucha, J. Appl. Phys. 63, 1744 (1988).

    Article  CAS  Google Scholar 

  18. G. Herzberg, Atomic Spectra and Atomic Structure (Dover Publications, New York, 1944), Chap. IV.

    Google Scholar 

  19. O. Matsumoto and T. Katagiri, Thin Solid Films 146, 283 (1987).

    Article  CAS  Google Scholar 

  20. F. G. Celii and J. E. Butler, Appl. Phys. Lett. 54, 1031 (1989).

    Article  CAS  Google Scholar 

  21. S. J. Harris, A.M. Weiner, and T. A. Perry, Appl. Phys. Lett. 53, 1605 (1988).

    Article  CAS  Google Scholar 

  22. S. J. Harris, J. Appl. Phys. 65, 3044 (1989).

    Article  CAS  Google Scholar 

  23. F.G. Celii, P.E. Pehrsson, H-t. Wang, and J.E. Butler, Appl. Phys. Lett. 52, 2043 (1988).

    Article  CAS  Google Scholar 

  24. C-F. Chen, Y. C. Huang, S. Hosomi, and I. Yoshida, Mater. Res. Bull. XXIV, 87 (1989).

    Article  Google Scholar 

  25. S. P. Chauhan, J. C. Angus, and N. C. Gardner, J. Appl. Phys. 47, 4746 (1976).

    Article  CAS  Google Scholar 

  26. B.V. Derjaguin and D.V. Fedoseev, Russian Chem. Rev. 53, 435 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valone, S.M., Trkula, M. & Laia, J.R. Possible behavior of a diamond (111) surface in methane/hydrogen systems. Journal of Materials Research 5, 2296–2304 (1990). https://doi.org/10.1557/JMR.1990.2296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2296

Navigation