Skip to main content
Log in

Adsorption Properties of the C(100)-(2×1) Diamond Surface with Vacancy Defects and “Nitrogen + Vacancy” Complexes

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The results are presented from the quantum-chemical modeling of hydrogen chemisorption on a C(100)-(2×1) diamond surface that contains the most stable neutral monovacancies and negatively charged “nitrogen + vacancy” defects in the surface layers. The configurations of molecular orbitals are analyzed for the studied defects. It is found that a vacancy in the third layer and a “vacancy in the third layer, nitrogen in the fourth layer” complex alter the values of the activation energy and the heat of hydrogen chemisorption on the surface. The most active adsorption centers are represented by the atoms of the first and second layers located directly above the NV complex in the singlet state. The chemisorption of hydrogen on the same defect in the triplet state is the most complicated of the considered cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. F. Jelezko and J. Wrachtrup, Phys. Status Solidi A 203, 3207 (2006).

    Article  CAS  Google Scholar 

  2. A. V. Tsukanov, Russ. Microelectron. 41, 91 (2012);

    Article  CAS  Google Scholar 

  3. Russ. Microelectron. 42, 1 (2013).

  4. J. M. Boss, K. Chang, J. Armijo, et al., Phys. Rev. Lett. 116, 197601 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. W. Pfaff, B. J. Hensen, H. Bernien, et al., Science (Washington, DC, U. S.) 345, 532 (2014).

    Article  CAS  Google Scholar 

  6. C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017).

    Article  Google Scholar 

  7. M. W. Doherty, V. V. Struzhkin, D. A. Simpson, et al., Phys. Rev. Lett. 112, 047601 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. A. S. Barnard, Analyst 134, 1751 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. O. A. Shenderova and G. E. McGuire, Biointerphases 10, 030802 (2015).

    Article  PubMed  Google Scholar 

  10. A. S. Barnard and M. Sternberg, J. Phys. Chem. B 109, 17107 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. A. S. Barnard and M. Sternberg, Nanotecnology 18, 025702 (2007).

    Article  CAS  Google Scholar 

  12. A. S. Barnard and M. Sternberg, J. Comput. Theor. Nanosyst. 5, 1 (2008).

    Article  CAS  Google Scholar 

  13. C. Bradac, T. Gaebel, N. Naidoo, et al., Nano Lett. 9, 3555 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. A. S. Barnard, Mater. Horiz. 1, 286 (2014).

    Article  CAS  Google Scholar 

  15. V. Ivady, T. Simon, J. R. Maze, et al., Phys. Rev. B 90, 235205 (2014).

    Article  CAS  Google Scholar 

  16. M.-M. Yao, T.-Y. Zhu, and D.-J. Shu, Appl. Phys. Lett. 111, 042108 (2017).

    Article  CAS  Google Scholar 

  17. H. Pinto, R. Jones, D. W. Palmer, et al., Phys. Rev. B 86, 045313 (2012).

    Article  CAS  Google Scholar 

  18. M. Kaviani, P. Deak, B. Aradi, et al., Nano Lett. 14, 4772 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. V. A. Pushkarchuk, S. Ya. Kilin, A. P. Nizovtsev, et al., Opt. Spectrosc. 99, 245 (2005).

    Article  CAS  Google Scholar 

  20. V. A. Pushkarchuk, S. Ya. Kilin, A. P. Nizovtsev, et al., Opt. Spectrosc. 108, 247 (2010).

    Article  CAS  Google Scholar 

  21. O. Yu. Ananyina and E. V. Severina, Bull. Russ. Acad. Sci.: Phys. 76, 595 (2012).

    Article  CAS  Google Scholar 

  22. A. Nagl, S. R. Hemelaar, and R. Schirhagl, Anal. Bioanal. Chem. 407, 7521 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. E. Bernardi, R. Nelz, S. Sonusen, and E. Neu, Crystals 7, 124 (2017).

    Article  CAS  Google Scholar 

  24. N. A. Lvova, O. V. Ponomarev, and A. I. Ryazanova, Comput. Mater. Sci. 131, 301 (2017).

    Article  CAS  Google Scholar 

  25. O. V. Ponomarev, A. I. Ryazanova, and N. A. Lvova, Surf. Sci. 667, 92 (2018).

    Article  CAS  Google Scholar 

  26. MOPAC2016, http://OpenMOPAC.net/, Version 16.158W, J. J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA.

  27. N. A. Lvova and O. Yu. Ananina, Comput. Mater. Sci. 101, 287 (2015).

    Article  CAS  Google Scholar 

  28. N. A. Lvova and O. Yu. Ananina, Comput. Mater. Sci. 115, 11 (2016).

    Article  CAS  Google Scholar 

  29. N. A. Lvova, O. Yu. Ananina, and A. I. Ryazanova, Comput. Mater. Sci. 124, 30 (2016).

    Article  CAS  Google Scholar 

  30. N. Lvova, A. Ryazanova, O. Ananina, and A. Yemelianova, Diamond Relat. Mater. 75, 110 (2017).

    Article  CAS  Google Scholar 

  31. O. Ponomarev, N. Lvova, and A. Ryazanova, Surf. Innovat. 6, 71 (2018).

    Google Scholar 

  32. R. Long, Y. Dai, L. Yu, et al., Appl. Surf. Sci. 254, 6478 (2008).

    Article  CAS  Google Scholar 

  33. A. K. Tiwari, J. P. Goss, P. R. Briddon, et al., Phys. Rev. B 84, 245305 (2011).

    Article  CAS  Google Scholar 

  34. W. S. Verwoerd, Surf. Sci. 108, 153 (1981).

    Article  CAS  Google Scholar 

  35. www.msg.ameslab.gov/gamess/gamess.html.

  36. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  37. A. Ito, H. Nakamura, and A. Takayama, arxiv:cond-mat/0703377 (2007).

  38. N. A. Lvova, O. V. Ponomarev, O. Yu. Ananina, and A. I. Ryazanova, Russ. J. Phys. Chem. A 91, 287 (2017).

    Article  Google Scholar 

  39. Yu. A. Filicheva, N. A. Lvova, and O. Yu. Ananina, Fullerenes Nanotubes Carbon Nanostruct. 20, 616 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the Shared Resource Center for Studies of Nanostructured, Carbon, and Superhard Materials. It was supported by the RF Ministry of Education and Science, agreement no 14.593.21.0007, ID RFMEFI59317X0007.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Ryazanova or N. A. Lvova.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryazanova, A.I., Lvova, N.A. Adsorption Properties of the C(100)-(2×1) Diamond Surface with Vacancy Defects and “Nitrogen + Vacancy” Complexes. Russ. J. Phys. Chem. 93, 751–757 (2019). https://doi.org/10.1134/S003602441904023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441904023X

Keywords:

Navigation