Skip to main content
Log in

Adsorption and bonding of C1Hx and C2Hy on unreconstructed diamond(111). Dependence on coverage and coadsorbed hydrogen

  • Diamond and Diamond-Like Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The adsorption and bonding of CH3, CH2, CH, C2H, and C2H2 fragments to clean and hydrogenated diamond(111) surfaces are investigated in the framework of the atom superposition and electron derealization molecular orbital method. Low coverage calculations are performed using large cluster models for the surfaces, and high coverages are examined with band calculations on thick two-dimensional slabs with every surface carbon covered by a hydrocarbon fragment (i.e., 1:1 surface coverage). For low coverage adsorption on clean and H-covered surfaces the adsorption energies are in the order C2H > CH CH2 > CH3. In each case, the predominant component of bonding is covalent in character and is a result of overlaps between the sp-hybridized singly occupied dangling surface state orbital on the surface carbon and the sp-hybridized orbital on the fragment carbon atom. While the charge transfer contribution to bonding is nearly the same for CH3, CH2, and CH fragments, it is significantly larger for C2H due to a comparatively stable radical orbital on C2H. C2H2 binds to the surface on the di-σ- site where both its ends form bonds to the surface atoms. Onefold adsorption to a H-covered surface is predicted to be unstable. The 1:1 CH3 coverage on diamond(lll) is highly unstable because of steric repulsions between adsorbate fragments due to their spacial proximity. This finding is supported by a calculation of the cis-trans isomerization energy of di-t-butyl ethylene, including full structure relaxations. At low coverage CH3 can bind on adjacent surface sites by tilting away from one another. The 1:1 coverage for CH2, CH, and C2H fragments is predicted to be stable on this surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Angus, F. A. Buck, M. Sunkara, T. F. Groth, C. C. Hayman, and R. Gat, Mater. Res. Bull., 38 (October 1989).

  2. K.E. Spear, J. Am. Ceram. Soc. 72, 171 (1989), and references therein.

    Article  CAS  Google Scholar 

  3. J. C. Angus and C. C. Hayman, Science 241, 913 (1988).

    Article  CAS  Google Scholar 

  4. J. C. Angus, Proc. of Symposium on Diamond and Diamond-like Materials, 175th Meeting of the Electrochemical Society, Los Angeles, CA, May 8, 1989.

    Google Scholar 

  5. A. R. Badzian and R. C. DeVries, Mater. Res. Bull. XXIII, 385 (1988).

    Article  Google Scholar 

  6. R.C. DeVries, Annu. Rev. Mater. Sci. 17, 161 (1987).

    Article  Google Scholar 

  7. K. Kobashi, K. Nishimura, Y. Kawate, and T. Horiuchi, Phys. Rev. B 38, 4067 (1988).

    Article  CAS  Google Scholar 

  8. C-P. Chang, D. L. Flamm, D. E. Ibbotson, and J. A. Mucha, J. Appl. Phys. 63, 1744 (1988).

    Article  CAS  Google Scholar 

  9. D. N. Belton and S. J. Schmieg, J. Appl. Phys. 66, 4223 (1989).

    Article  CAS  Google Scholar 

  10. S.J. Harris, D.N. Belton, A.M. Weiner, and S.J. Schmieg, J. Appl. Phys. 66, 5353 (1989).

    Article  CAS  Google Scholar 

  11. J. Ma, H. Kawarada, T. Yonehara, J. Suzuki, J. Wei, Y. Yokota, and A. Hiraki, Appl. Phys. Lett. 55, 1071 (1989).

    Article  CAS  Google Scholar 

  12. Y. Liou, A. Inspektor, R. Weimer, and R. Messier, Appl. Phys. Lett. 55, 631 (1989).

    Article  CAS  Google Scholar 

  13. G. Amaratunga, A. Putnis, K. Clay, and W. Milne, Appl. Phys. Lett. 55, 634 (1989).

    Article  CAS  Google Scholar 

  14. R. Meilunas, M. S. Wong, K. C. Sheng, R. P. H. Chang, and R. P. VanDuyne, Appl. Phys. Lett. 54, 2204 (1989).

    Article  CAS  Google Scholar 

  15. M.W. Geis, D.D. Rathman, D.J. Enrlich, R.A. Murphy, and W.T. Lindley, IEEE Electron Device Lett. 8, 341 (1987).

    Article  Google Scholar 

  16. M.W. Geis, N. N. Efremow, and D. D. Rathman, in Diamond and Diamond-like Materials Science and Engineering Study, edited by G. H. Johnson, M. Geis, and A. Badzian (Materials Research Society, Pittsburgh, PA, 1988).

    Google Scholar 

  17. G. S. Gildenblat, S. A. Grot, C.W. Hatfield, C. R. Wronski, A. R. Badzian, T. Badzian, and R. Messier, Mater. Res. Bull. XXV, 129 (1990).

    Article  Google Scholar 

  18. M. Tsuda, M. Nakajima, and S. Oikawa, J. Am. Chem. Soc. 108, 5780 (1986).

    Article  CAS  Google Scholar 

  19. M. Tsuda, M. Nakajima, and S. Oikawa, Jpn. J. Appl. Phys. 26, L527 (1987).

    Article  CAS  Google Scholar 

  20. M. Frenklach and K. E. Spear, J. Mater. Res. 3, 133 (1988).

    Article  CAS  Google Scholar 

  21. D. Huang, M. Frenklach, and M. Maroncelli, J. Phys. Chem. 92, 6379 (1988).

    Article  CAS  Google Scholar 

  22. A. B. Anderson, J. Chem. Phys. 62, 1187 (1975).

    Article  CAS  Google Scholar 

  23. A. B. Anderson and S. P. Mehandru, Surf. Sci. 136, 398 (1984).

    Article  CAS  Google Scholar 

  24. S. P. Mehandru and A. B. Anderson, Appl. Surf. Sci. 19, 116 (1984).

    Article  CAS  Google Scholar 

  25. S.Y. Chu and A. B. Anderson, Surf. Sci. 194, 55 (1988).

    Article  CAS  Google Scholar 

  26. S. P. Mehandru, A. B. Anderson, J. F. Brazdil, and R. K. Grasselli, J. Phys. Chem. 91, 2930 (1987).

    Article  CAS  Google Scholar 

  27. S. P. Mehandru, A. B. Anderson, and J. F. Brazdil, J. Am. Chem. Soc. 110, 1715 (1988).

    Article  CAS  Google Scholar 

  28. M. D. Ward, J. F. Brazdil, S. P. Mehandru, and A. B. Anderson, J. Phys. Chem. 91, 6515 (1987).

    Article  CAS  Google Scholar 

  29. S. P. Mehandru, A. B. Anderson, and J. F. Brazdil, J. Chem. Soc., Faraday Trans. 1, 83, 463 (1987).

    Article  CAS  Google Scholar 

  30. A. B. Anderson, R.W. Grimes, and S.Y. Hong, J. Phys. Chem. 91, 4245 (1987).

    Article  CAS  Google Scholar 

  31. K. Nath and A. B. Anderson, Solid State Commun. 66, 277 (1988).

    Article  CAS  Google Scholar 

  32. P. G. Laurie and J. M. Wilson, Surf. Sci. 65, 453 (1977).

    Article  Google Scholar 

  33. W. S. Yang, J. Sokolov, F. Jona, and P. M. Marcus, Solid State Commun. 41, 191 (1982).

    Article  CAS  Google Scholar 

  34. B. B. Pate, Surf. Sci. 165, 83 (1986).

    Article  CAS  Google Scholar 

  35. B. J. Waclawski, D.T. Pierce, N. Swanson, and R. J. Celotta, J. Vac. Sci. Technol. 21, 368 (1982).

    Article  CAS  Google Scholar 

  36. G. Vidali and D. R. Frankl, Phys. Rev. B 27, 2480 (1983).

    Article  CAS  Google Scholar 

  37. G. Vidali, M.W. Cole, W. H. Weinberg, and W. A. Steele, Phys. Rev. Lett. 51, 118 (1983).

    Article  CAS  Google Scholar 

  38. A.V. Hamza, G. D. Kubiak, and R. H. Stulen, Surf. Sci. 206, L833 (1988).

    Article  CAS  Google Scholar 

  39. J. J. Lander and J. Morrison, Surf. Sci. 4, 241 (1966).

    Article  CAS  Google Scholar 

  40. T. Derry, L. Smit, and J. F. van der Veen, Surf. Sci. 167, 502 (1986).

    Article  CAS  Google Scholar 

  41. S.W. Benson, Thermochemical Kinetics (Wiley, New York, 1976).

    Google Scholar 

  42. M. Frenklach, D.W Clary, W. C. Gardiner, Jr., and S.T. Stein, Twentieth International Symposium on Combustion (The Combustion Institute, 1984), p. 887.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehandru, S.P., Anderson, A.B. Adsorption and bonding of C1Hx and C2Hy on unreconstructed diamond(111). Dependence on coverage and coadsorbed hydrogen. Journal of Materials Research 5, 2286–2295 (1990). https://doi.org/10.1557/JMR.1990.2286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2286

Navigation