Skip to main content
Log in

Effect of MnO on the microstructures, phase stability, and mechanical properties of ceria-partially-stabilized zirconia (Ce–TZP) and Ce–TZP–Al2O3 composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of increasing amounts of MnO additions on the microstructures, phase stability, and mechanical properties of ZrO2–12 mol % CeO2 and ZrO2–12 mol% CeO2–10 wt.% Al2O3 were studied. MnO suppressed grain growth in ZrO2–12 mol% CeO2, while enhancing the mechanical properties significantly (strength = 557 MPa, fracture toughness = 9.3 MPa \(\sqrt {\rm{m}} \) at 0.2 wt.% MnO). The enhanced mechanical properties were achieved despite an increased stability of the tetragonal phase, as evidenced by a lower burst transformation temperature (Mb) and a reduced volume fraction of the monoclinic phase on the fracture surface. In ZrO2–12 mol% CeO2–10 wt.% Al2O3, the addition of MnO suppressed the grain size of ZrO2, while promoting grain growth and changing the morphology of Al2O3. More significantly, the stability of the tetragonal ZrO2 phase decreased (high Mb temperature) with a concurrent increase in fracture toughness (13.2 MPa \(\sqrt {\rm{m}} \) at 2 wt.% MnO) and transformation plasticity (1.2% in four-point bending). The widths of the transformation zones observed adjacent to the fracture surfaces showed a consistent inverse relation to the transformation yield stress, as would be expected from the mechanics of stress-induced phase transformation at crack tips. The improvements in mechanical properties obtained in the base Ce–TZP and the Ce–TZP–Al2O3 composite ceramics with the addition of MnO are critically examined in the context of transformation toughening and other possible mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tsukuma and T. Takahata, in Advanced Structural Ceramics, edited by P. F. Becher, M. V. Swain, and S. Somiya (Materials Research Society, Pittsburgh, PA, 1987), Vol. 78, pp. 123–135.

  2. T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, L. H. Cadoff, and B. R. Rossing, J. Mater. Sci. 12, 2421–2426 (1977).

    Article  CAS  Google Scholar 

  3. F. F. Lange, J. Mater. Sci. 17, 240–246 (1982).

    Article  CAS  Google Scholar 

  4. K. Tsukuma, K. Ueda, K. Matsushita, and M. Shimada, J. Am. Ceram. Soc. 68 (2), C-56–C-58 (1985).

    Article  CAS  Google Scholar 

  5. K. Tsukuma and M. Shimada, J. Mater. Sci. 20, 1178–1184 (1985).

    Article  CAS  Google Scholar 

  6. K. Tsukuma, Am. Ceram. Soc. Bull. 65 (10), 1386–1389 (1986).

    CAS  Google Scholar 

  7. K. Tsukuma, T. Takahata, and M. Shiomi, in Advances in Ceramics, edited by S. Somiya, N. Yamamoto, and H. Hanagida (The American Ceramic Society, Inc., 1988), Vol. 24B.

  8. A. V. Virkar and R. L. K. Matsumoto, J. Am. Ceram. Soc. 69 (10), C-224–C-226 (1986).

    Article  CAS  Google Scholar 

  9. A. V. Virkar and R. L. K. Matsumoto, m Advances in Ceramics, edited by S. Somiya, N. Yamamoto, and H. Hanagida (The American Ceramic Society, Inc., 1988), Vol. 24B, pp. 653–662.

  10. G. V. Srinivasan, J. F. Jue, S. Y. Kuo, and A. V. Virkar, J. Am. Ceram. Soc. (1990, in press).

  11. P. E. Reyes-Morel and I-Wei Chen, J. Am. Ceram. Soc. 71 (5), 343–353 (1988).

  12. P. E. Reyes-Morel, J. S. Cherng, and I-Wei Chen, J. Am. Ceram. Soc. 71 (8), 648–657 (1988).

    Article  CAS  Google Scholar 

  13. C. S. Yu and D. K. Shetty, J. Am. Ceram. Soc. 72 (6), 921–928 (1989).

    Article  CAS  Google Scholar 

  14. C. S. Yu and D. K. Shetty, J. Mater. Sci. 25, 2025–2035 (1989).

    Article  Google Scholar 

  15. L. R. F. Rose and M. V. Swain, Acta Metall, 36 (4), 955–962 (1988).

    Article  CAS  Google Scholar 

  16. H. Toraya, M. Yoshimura, and S. Somiya, J. Am. Ceram. Soc. 67 (9), C-119–C-121 (1984).

    Article  CAS  Google Scholar 

  17. MIL-STD-1942 (MR), “Flexure Strength of High Performance Ceramics at Ambient Temperature”, November (1983).

  18. S. L. Huang and I.-Wei Chen, “Grain Growth Control in Zirconia Polycrystals”, paper presented at the 4th Int. Conf. on the Science and Technology of Zirconia, Annaheim, CA, November 1 (1989).

  19. A. H. Heuer, N. Claussen, W. M. Kriven, and M. Ruhle, J. Am. Ceram. Soc. 65 (12), 642–650 (1982).

    Article  CAS  Google Scholar 

  20. A. H. Heuer and M. Ruhle, Acta Metall. 33 (12), 2101–2112 (1985).

    Article  CAS  Google Scholar 

  21. K. Mehta and A. V. Virkar, J. Am. Ceram. Soc. 73 (3), 567–574 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.S., Tsai, J.F., Shetty, D.K. et al. Effect of MnO on the microstructures, phase stability, and mechanical properties of ceria-partially-stabilized zirconia (Ce–TZP) and Ce–TZP–Al2O3 composites. Journal of Materials Research 5, 1948–1957 (1990). https://doi.org/10.1557/JMR.1990.1948

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.1948

Navigation