Skip to main content

Advertisement

Log in

Effects of sintering temperature and zirconia content on the mechanical and microstructural properties of MgO, TiO2 and CeO2 doped alumina–zirconia (ZTA) ceramic

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The effects of sintering temperature and ZrO2 addition on the hardness and fracture toughness of zirconia toughened alumina (ZTA)–MgO–TiOcomposite was investigated. 5 wt.% CeOwas added to ZTA containing 5 wt.% of MgO and 5 wt.% of TiO2. Two sets of composition A5ZMTC and A15ZMTC were used consisting of 5 wt.% and 15 wt.% of 3YSZ, respectively, to analyze the effect of CeOon the base composition. The powders were pressed into pellets and sintered at different temperatures of 1450 °C, 1500 °C, 1600 °C and 1650 °C for 3 h. Density, hardness and fracture toughness increased to a maximum value and then decreased. From the XRD analysis, Ce0.7Zr0.3Oin only A5ZMTC and CeAl11O18 in only A15ZMTC are evident. The highest fracture toughness of 12.03 MPam1/2 (Casellas) was achieved at 1500 °C in A15ZMTC and maximum hardness of 14.15 GPa was obtained in A5ZMTC sintered at 1450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Moradkhani, H. Baharvandi, A. Naserifar, Fracture toughness of 3Y-TZP dental ceramics by using vickers indentation fracture and SELNB methods. J. Korean Ceram. Soc. 56, 37–48 (2019). https://doi.org/10.4191/kcers.2019.56.1.01

    Article  CAS  Google Scholar 

  2. A. Moradkhani, H.R. Baharvandi, A. Vafaeesefat, M. Tajdari, Microstructure and mechanical properties of Al2O3-SiC nanocomposites with 0.05\% MgO and different SiC volume fraction. Int. J. Adv. Des. Manuf. Technol. 5, 99–105 (2012)

    CAS  Google Scholar 

  3. N.A. Rejab, A.Z.A. Azhar, M.M. Ratnam, Z.A. Ahmad, The relationship between microstructure and fracture toughness of zirconia toughened alumina (ZTA) added with MgO and CeO2. Int. J. Refract. Met. Hard Mater. 41, 522–530 (2013). https://doi.org/10.1016/j.ijrmhm.2013.07.002

    Article  CAS  Google Scholar 

  4. N. Claussen, Fracture toughness of Al2O3 with an unstabilized ZrO2 dispersed phase. J. Am. Ceram. Soc. 59, 49–51 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb09386.x

    Article  CAS  Google Scholar 

  5. J. Wang, R. Stevens, Zirconia-toughened alumina (ZTA) ceramics. J. Mater. Sci. 24, 3421–3440 (1989). https://doi.org/10.1007/BF02385721

    Article  CAS  Google Scholar 

  6. F. Sommer, R. Landfried, F. Kern, R. Gadow, Mechanical properties of zirconia toughened alumina with 10–24 vol.% 1.5 mol% Y-TZP reinforcement. J. Eur. Ceram. Soc. 32, 6 (2012)

    Google Scholar 

  7. F. Sommer, R. Landfried, F. Kern, R. Gadow, Mechanical properties of zirconia toughened alumina with 10–24vol.% 1Y-TZP reinforcement. J. Eur. Ceram. Soc. 32, 4177–4184 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.06.019

    Article  CAS  Google Scholar 

  8. R. Vasudevan, T. Karthik, S. Ganesan, R. Jayavel, Effect of microwave sintering on the structural and densification behavior of sol–gel derived zirconia toughened alumina (ZTA) nanocomposites. Ceram. Int. 39, 3195–3204 (2013). https://doi.org/10.1016/j.ceramint.2012.10.004

    Article  CAS  Google Scholar 

  9. A. Moradkhani, H. Baharvandi, A. Naserifar, Effect of sintering temperature on the grain size and mechanical properties of Al2O3-SiC nanocomposites. J. Korean Ceram. Soc. 56, 256–268 (2019). https://doi.org/10.4191/kcers.2019.56.3.01

    Article  CAS  Google Scholar 

  10. H. Baharvandi, M. Tajdari, A. Moradkhani, Study of fracture toughness in B 4 C-TiB 2 nanocomposites with vickers indentation test method at different loads. Amirkabir J. Sci. Res. 46, 21–23 (2014)

    Google Scholar 

  11. C.-S. Hwang, W.-H. Lin, Preparation and sinterability of zirconia-toughened-alumina composite powder. J. Ceram. Soc. Japan. 99, 271–275 (1991). https://doi.org/10.2109/jcersj.99.271

    Article  CAS  Google Scholar 

  12. T. Ebadzadeh, E. Ghasemi, Effect of TiO2 addition on the stability of t-ZrO2 in mullite-ZrO2 composites prepared from various starting materials. Ceram. Int. 28, 447–450 (2002). https://doi.org/10.1016/S0272-8842(01)00117-1

    Article  CAS  Google Scholar 

  13. A. Al Mahmood, A. Gafur, E. Hoque, Surface Properties Modification of Zirconia Toughened Alumina by Using Titania Additives, http://www.Sciencepublishinggroup.Com. 2 (2017) 1. https://doi.org/10.11648/J.CSS.20170201.11.

  14. M.J. Abden, J.D. Afroze, M.R. Qadir, M.A. Gafur, Study of high temperature sintering process on characteristics of Al 2 O 3 –ZrO 2 –TiO 2 ceramics systems. Mater. Focus 3, 67–71 (2014). https://doi.org/10.1166/mat.2014.1139

    Article  CAS  Google Scholar 

  15. M.I. Osendi, J.S. Moya, Role of titania on the sintering, microstructure and fracture toughness of Al2O3/ZrO2 composites. J. Mater. Sci. Lett. 7, 15–18 (1988). https://doi.org/10.1007/BF01729901

    Article  CAS  Google Scholar 

  16. I.D. Prendergast, D.W. Budworth, N.H. Brett, Densification and grain size control in alumina. Trans. J. Br. Ceram. Soc. 71, 6 (1972)

    Google Scholar 

  17. C. Greskovich, J.A. Brewer, Solubility of magnesia in polycrystalline alumina at high temperatures. J. Am. Ceram. Soc. 84, 6 (2001)

    Google Scholar 

  18. N.A. Rejab, W.K. Lee, Z.D.I. Sktani, Z.A. Ahmad, Hardness and toughness enhancement of CeO 2 addition to ZTA ceramics through HIPping technique. Int. J. Refract. Met. Hard Mater. 69, 60–65 (2017). https://doi.org/10.1016/j.ijrmhm.2017.08.002

    Article  CAS  Google Scholar 

  19. A.A. AL Mahmood, M.A.M.A. Gafur, M.E.M.E. Hoque, Effect of MgO on the physical, mechanical and microstructural properties of ZTA-TiO2 composites. Mater. Sci. Eng. A (2017). https://doi.org/10.1016/j.msea.2017.09.048

    Article  Google Scholar 

  20. ASTM International, Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water (ASTM C20–00), ASTM Int. West Conshohocken, PA. (2000) 3. https://doi.org/10.1520/C0020-00.

  21. I. Akin, E. Yilmaz, F. Sahin, O. Yucel, G. Goller, Effect of CeO2 addition on densification and microstructure of Al2O3–YSZ composites. Ceram. Int. 37, 3273–3280 (2011). https://doi.org/10.1016/j.ceramint.2011.05.123

    Article  CAS  Google Scholar 

  22. N.P. Bansal, S.R. Choi, Processing of Alumina-Toughened Zirconia Composites (NASA Glenn Research Center, 2003)

    Google Scholar 

  23. H. Tanaka, T. Maeda, H. Narikiyo, T. Morimoto, Mechanical properties of partially stabilized zirconia for dental applications. J. Asian Ceram. Soc. 7, 460–468 (2019). https://doi.org/10.1080/21870764.2019.1665767

    Article  Google Scholar 

  24. K. Suzuki, M. Kato, T. Sunaoshi, H. Uno, U. Carvajal-Nunez, A.T. Nelson, K.J. McClellan, Thermal and mechanical properties of CeO2. J. Am. Ceram. Soc. 102, 1994–2008 (2019). https://doi.org/10.1111/jace.16055

    Article  CAS  Google Scholar 

  25. B. SalmanyKozekanan, A. Moradkhani, H. Baharvandi, N. Ehsani, Mechanical properties of SiC-C-B4C composites with different carbon additives produced by pressureless sintering. Int. J. Appl. Ceram. Technol. 18, 957–971 (2021). https://doi.org/10.1111/ijac.13686

    Article  CAS  Google Scholar 

  26. A. Moradkhani, H. Baharvandi, Analyzing the microstructures of W-ZrC composites fabricated through reaction sintering and determining their fracture toughness values by using the SENB and VIF methods. Eng. Fract. Mech. 189, 501–513 (2018). https://doi.org/10.1016/j.engfracmech.2017.11.038

    Article  Google Scholar 

  27. A. Moradkhani, H. Baharvandi, Determining the fracture resistance of B4C-NanoSiB6 nanocomposite by Vickers indentation method and exploring its mechanical properties. Int. J. Refract. Met. Hard Mater. 68, 159–165 (2017). https://doi.org/10.1016/j.ijrmhm.2017.07.009

    Article  CAS  Google Scholar 

  28. H. Baharvandi, M. Tajdari, A. Moradkhani, Study of fracture toughness in B4C-TiB2 Nanocomposites with Vickers indentation test method at different loads, Amirkabir. J Mech. Eng. 46, 57–65 (2015). https://doi.org/10.22060/mej.2015.350

    Article  Google Scholar 

  29. A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, J. Martikainen, Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by Vickers indentation test. J. Adv. Ceram. 2, 87–102 (2013). https://doi.org/10.1007/s40145-013-0047-z

    Article  CAS  Google Scholar 

  30. J.F. Ma, S.Q. Wang, R.X. Du, X.D. Li, Pressureless sintering of gelcast ZTA–MgO–TiO 2 systems as potential dental ceramics. Adv. Appl. Ceram. 110, 275–279 (2011). https://doi.org/10.1179/1743676111Y.0000000010

    Article  CAS  Google Scholar 

  31. N.A. Rejab, A.Z.A. Azhar, M.M. Ratnam, Z.A. Ahmad, The effects of CeO2 addition on the physical, microstructural and mechanical properties of yttria stabilized zirconia toughened alumina (ZTA). Int. J. Refract. Met. Hard Mater. 36, 162–166 (2013). https://doi.org/10.1016/j.ijrmhm.2012.08.010

    Article  CAS  Google Scholar 

  32. H. Manshor, E.C. Abdullah, A.Z.A. Azhar, Y.W. Sing, Z.A. Ahmad, F. Sommer, R. Landfried, F. Kern, R. Gadow, F. Meng, C. Liu, F. Zhang, Z. Tian, W. Huang, A.Z.A. Azhar, L.C. Choong, H. Mohamed, M.M. Ratnam, Z.A. Ahmad, H. Manshor, E.C. Abdullah, A.Z.A. Azhar, Y.W. Sing, Z.A. Ahmad, Microwave sintering of zirconia-toughened alumina (ZTA)-TiO2-Cr2O3 ceramic composite: the effects on microstructure and properties. J. Alloys Compd. 722, 458–466 (2017). https://doi.org/10.1016/j.jallcom.2017.06.115

    Article  CAS  Google Scholar 

  33. N.A. Rejab, A.Z.A. Azhar, K.S. Kian, M.M. Ratnam, Z.A. Ahmad, Effects of MgO addition on the phase, mechanical properties, and microstructure of zirconia-toughened alumina added with CeO2 (ZTA–CeO2) ceramic composite. Mater. Sci. Eng. A. 595, 18–24 (2014). https://doi.org/10.1016/j.msea.2013.11.091

    Article  CAS  Google Scholar 

  34. H. Manshor, S. Md Aris, A.Z.A. Azhar, E.C. Abdullah, Z.A. Ahmad, Effects of TiO2 addition on the phase, mechanical properties, and microstructure of zirconia-toughened alumina ceramic composite. Ceram. Int. 41, 3961–3967 (2015). https://doi.org/10.1016/j.ceramint.2014.11.080

    Article  CAS  Google Scholar 

  35. A.Z.A. Azhar, S.H. Mohamad Shawal, H. Manshor, A.M. Ali, N.A. Rejab, E.C. Abdullah, Z.A. Ahmad, The effects of CeO2 addition on the physical and microstructural properties of ZTA-TiO2 ceramics composite. J. Alloys Compd. 773, 27–33 (2019). https://doi.org/10.1016/j.jallcom.2018.09.173

    Article  CAS  Google Scholar 

  36. S. Dhar, S. Shuvo, A. Rashid, Mechanical and microstructural properties of TiO2 doped zirconia toughened alumina (ZTA) ceramic composites at different TiO2 contents. Am. J. Eng. Res. 4, 8–12 (2015)

    Google Scholar 

  37. M.M.M.M.B.B. Hossen, F.-U.-Z.F.-U.-Z. Chowdhury, M.A.A. Gafur, A.K.M. Abdul Hakim, M.M.M.M.B.B.B. Hossen, A.K.M.A. Hakim, M.B.B. Hossen, Effect of zirconia substitution on structural and mechanical properties of ZTA composites. IOSR J. Mech. Civ. Eng. (2014). https://doi.org/10.9790/1684-11210107

    Article  Google Scholar 

  38. N.A. Rejab, A.Z.A. Azhar, K.S. Kian, M.M. Ratnam, Z.A. Ahmad, Effects of MgO addition on the phase, mechanical properties, and microstructure of zirconia-toughened alumina added with CeO2 (ZTA-CeO2) ceramic composite. Mater. Sci. Eng. A. 595, 18–24 (2014). https://doi.org/10.1016/j.msea.2013.11.091

    Article  CAS  Google Scholar 

  39. N.A. Rejab, A.Z. Ahmad Azhar, M.M. Ratnam, Role of MgO nanoparticles on zirconia-toughened alumina-5 wt-% CeO2 ceramics mechanical properties. Mater. Sci. Technol. (United Kingdom) 32, 1316–1322 (2016). https://doi.org/10.1080/02670836.2015.1118792

    Article  CAS  Google Scholar 

  40. H. Latifi, A. Moradkhani, H. Baharvandi, J. Martikainen, Fracture toughness determination and microstructure investigation of a B4C–NanoTiB2 composite with various volume percent of Fe and Ni additives. Mater. Des. 62, 392–400 (2014). https://doi.org/10.1016/j.matdes.2014.05.039

    Article  CAS  Google Scholar 

  41. A. Moradkhani, H. Baharvandi, Mechanical properties and fracture behavior of B4C-nano/micro SiC composites produced by pressureless sintering. Int. J. Refract. Met. Hard Mater. 70, 107–115 (2018). https://doi.org/10.1016/j.ijrmhm.2017.10.001

    Article  CAS  Google Scholar 

  42. A. Moradkhani, H. Baharvandi, M.M. Mohammadi Samani, Mechanical properties and microstructure of B4C–NanoTiB2–Fe/Ni composites under different sintering temperatures. Mater. Sci. Eng. A. 665, 141–153 (2016). https://doi.org/10.1016/j.msea.2016.04.034

    Article  CAS  Google Scholar 

  43. M. Guazzato, M. Albakry, S.P. Ringer, M.V. Swain, Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent. Mater. 20, 449–456 (2004). https://doi.org/10.1016/j.dental.2003.05.002

    Article  CAS  Google Scholar 

  44. X.W. Huang, S.W. Wang, X.X. Huang, Microstructure and mechanical properties of ZTA fabricated by liquid phase sintering. Ceram. Int. 29, 765–769 (2003). https://doi.org/10.1016/S0272-8842(02)00228-6

    Article  CAS  Google Scholar 

  45. V.V. Srdi, L. Radonji, Transformation toughening in sol-gel-derived alumina-zirconia composites. J. Am. Ceram. Soc. 80, 2056–2060 (2005). https://doi.org/10.1111/j.1151-2916.1997.tb03089.x

    Article  Google Scholar 

Download references

Acknowledgements

The journal was aided by the kind help of the pilot plant and process development centre (PP & PDC) of Bangladesh council of scientific and industrial research (BCSIR) and Department of Applied Chemistry and Chemical Engineering, University of Dhaka.

Author information

Authors and Affiliations

Authors

Contributions

MA-A: methodology, writing—original draft, formal analysis, data curation, investigation. HTM: data curation, methodology, writing—original draft, visualization, investigation. SS: methodology, data curation, validation. MZA: project administration, supervision, validation. MAG: conceptualization, supervision, writing—review and editing, formal analysis, project administration, validation.

Corresponding author

Correspondence to M. A. Gafur.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Amin, M., Mumu, H.T., Sarker, S. et al. Effects of sintering temperature and zirconia content on the mechanical and microstructural properties of MgO, TiO2 and CeO2 doped alumina–zirconia (ZTA) ceramic. J. Korean Ceram. Soc. 60, 141–154 (2023). https://doi.org/10.1007/s43207-022-00194-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00194-0

Keywords

Navigation