Skip to main content
Log in

Advances in synchrotron x-ray diffraction and transmission electron microscopy techniques for the investigation of microstructure evolution in proton- and neutron-irradiated zirconium alloys

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Transmission electron microscopy (TEM) studies provide mechanistic understanding of nanoscale processes, whereas advanced synchrotron XRD (SXRD) enables precise measurements on volumes that are more representative of bulk materials. Therefore, the combined strengths of these techniques can provide new insight into irradiation-induced mechanistic processes. In the present study, their application to Zircaloy-2, proton-irradiated to 2.3, 4.7, and 7.0 dpa at 2 MeV and 350 °C and neutron-irradiated to 9.5 and 13.1 × 1025 n m−2 are exemplified. The application of correlative spectral imaging and structural TEM investigations to the phase transformation of Zr(Fe,Nb)2 precipitates in Low-Sn ZIRLO™, neutron-irradiated to 8.9–9 × 1025 n m−2, demonstrates the possibility of a Cr core nucleation site. Anomalous broadening is observed in SXRD profiles, which is believed to be caused by defect clusters and precursors to dislocation loop nucleation. The challenges to quantitative analysis of dislocations by SXRD are highlighted with reference to the segregation of Fe and Ni to basal planes and dislocation cores, observed by spectral imaging in the TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. C.H. Woo: Theory of irradiation deformation in non-cubic metals: Effects of anisotropic diffusion. J. Nucl. Mater. 159, 237–256 (1988).

    Article  CAS  Google Scholar 

  2. R.A. Holt: Mechanisms of irradiation growth of alpha-zirconium alloys. J. Nucl. Mater. 159, 310–338 (1988).

    Article  CAS  Google Scholar 

  3. D. Gilbon, A. Soniak, S. Doriot, and J-P. Mardon: Irradiation creep and growth behavior, and microstructural evolution of advanced Zr-base alloys. Zirconium in the Nuclear Industry: Twelfth International Symposium ASTM STP 1354, G.P. Gabol and G.D. Moan eds.; American Society for Testing and Materials: West Conshohocken, PA, 2000; pp. 51–73.

    Chapter  Google Scholar 

  4. R.B. Adamson: Effects of neutron irradiation on microstructure and properties of zircaloy. Zirconium in the Nuclear Industry: Twelfth International Symposium ASTM STP 1354, G.P. Gabol and G.D. Moan eds.; American Society for Testing and Materials: West Conshohocken, PA, 2000; pp. 15–31.

    Chapter  Google Scholar 

  5. M. Griffiths: A review of microstructure evolution in zirconium alloys during irradiation. J. Nucl. Mater. 159, 190–218 (1988).

    Article  CAS  Google Scholar 

  6. G.S. Was: Fundamentals of Radiation Materials Science (Springer Berlin Heidelberg, New York, 2007); p. 83.

    Google Scholar 

  7. L. Tournadre, F. Onimus, J-L. Béchade, D. Gilbon, J-M. Cloué, J-P. Mardon, X. Feaugas, O. Toader, and C. Bachelet: Experimental study of the nucleation and growth of c-component loops under charged particle irradiations of recrystallized Zircaloy-4. J. Nucl. Mater. 425, 76–82 (2012).

    Article  CAS  Google Scholar 

  8. X.T. Zu, K. Sun, M. Atzmon, L.M. Wang, L.P. You, F.R. Wan, J.T. Busby, G.S. Was, and R.B. Adamson: Effect of proton and Ne irradiation on the microstructure of Zircaloy 4. Philos. Mag. 85, 649–659 (2005).

    Article  CAS  Google Scholar 

  9. G. Ribárik, T. Ungár, and J. Gubicza: MWP-fit: A program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. J. Appl. Crystallogr. 34, 669–676 (2001).

    Article  Google Scholar 

  10. G. Ribárik, J. Gubicza, and T. Ungár: Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by x-ray diffraction. Mater. Sci. Eng., A 387–389, 343–347 (2004).

    Article  CAS  Google Scholar 

  11. L. Balogh, G. Tichy, and T. Ungár: Twinning on pyramidal planes in hexagonal close packed crystals determined along with other defects by x-ray line profile analysis. J. Appl. Crystallogr. 42, 580–591 (2009).

    Article  CAS  Google Scholar 

  12. S.P. Thompson, J.E. Parker, J. Potter, T.P. Hill, A. Birt, T.M. Cobb, F. Yuan, and C.C. Tang: Beamline I11 at diamond: A new instrument for high resolution powder diffraction. Rev. Sci. Instrum. 80, 075107 (2009).

    Article  CAS  Google Scholar 

  13. A. Borbély and T. Ungár: X-ray line profiles analysis of plastically deformed metals. C. R. Phys. 13, 293–306 (2012).

    Article  CAS  Google Scholar 

  14. P. Vizcaíno, A.D. Banchik, and J.P. Abriata: Synchrotron x-ray diffraction evidences of the amorphization/dissolution of the second phase particles (SPPs) in neutron irradiated Zircaloy-4. Mater. Lett. 62, 491–493 (2008).

    Article  CAS  Google Scholar 

  15. J-L. Béchade, D. Menut, S. Doriot, S. Schlutig, and B. Sitaud: X-ray diffraction analysis of secondary phases in zirconium alloys before and after neutron irradiation at the MARS synchrotron radiation beamline. J. Nucl. Mater. 437, 365–372 (2013).

    Article  CAS  Google Scholar 

  16. A.R. Akbashev, V.V. Roddatis, A.L. Vasiliev, S. Lopatin, A.S. Semisalova, N.S. Perov, V.A. Amelichev, and A.R. KaulReconstructed stacking faults in cobalt-doped hexagonal LuFeO3 revealed by mapping of cation distribution at the atomic scale. CrystEngComm 14, 5373–5376 (2012).

    Article  CAS  Google Scholar 

  17. D. Hudson and G.D.W. Smith: Initial observation of grain boundary solute segregation in a zirconium alloy (ZIRLO) by three-dimensional atom probe. Scr. Mater. 61, 411–414 (2009).

    Article  CAS  Google Scholar 

  18. Y. Dong, A.T. Motta, and E.A. Marquis: Atom probe tomography study of alloying element distributions in Zr alloys and their oxides. J. Nucl. Mater. 442, 270–281 (2013).

    Article  CAS  Google Scholar 

  19. G. Sundell, M. Thuvander, P. Tejland, M. Dahlbäck, L. Hallstadius, and H-O. Andrén: Redistribution of alloying elements in Zircaloy-2 after in-reactor exposure. J. Nucl. Mater. 454, 178–185 (2014).

    Article  CAS  Google Scholar 

  20. C.H. Woo: Defect accumulation behaviour in hcp metals and alloys. J. Nucl. Mater. 276, 90–103 (2000).

    Article  CAS  Google Scholar 

  21. M. Griffiths, R.W. Gilbert, and G.J.C. Carpenter: Phase instability, decomposition and resdistribution of intermetallic precipitates in Zircaloy-2 and -4 during neutron irradiation. J. Nucl. Mater. 150, 53–66 (1987).

    Article  CAS  Google Scholar 

  22. W.J.S. Yang: Precipitate stability in neutron-irradiated Zircaloy-4. J. Nucl. Mater. 158, 71–80 (1988).

    Article  CAS  Google Scholar 

  23. Y. de Carlan, C. Regnard, M. Griffiths, D. Gilbon, and C. Lemaignan: Influence of iron in the nucleation of <c> component dislocation loops in irradiated Zircaloy-4. Zirconium in the Nuclear Industry: Eleventh International Symposium ASTM STP 1295, E.R. Bradley and G.P. Gabol eds.; American Society for Testing and Materials: 1996; pp. 638–653.

  24. V.N. Shishov, M.M. Peregud, A.V. Nikulina, V.F. Kon’kov, V.V. Novikov, V.A. Markelov, T.N. Khokhunova, G.P. Kobylyansky, A.E. Novoselov, Z.E. Ostrovsky, and A.V. Obukhov: Structure-phase state, corrosion and irradiation properties of Zr-Nb-Fe-Sn system alloys. J. ASTM Int. 5, 724–743 (2011).

    Google Scholar 

  25. A.D. King, G.M. Hood, and R.A. Holt: Fe-enhancement of self-diffusion in alpha-Zr. J. Nucl. Mater. 185, 174–181 (1991).

    Article  CAS  Google Scholar 

  26. M. Christensen, W. Wolf, C.M. Freeman, E. Wimmer, R.B. Adamson, L. Hallstadius, P.E. Cantonwine, and E.V. Mader: Effect of alloying elements on the properties of Zr and the Zr–H system. J. Nucl. Mater. 445, 241–250 (2014).

    Article  CAS  Google Scholar 

  27. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75–80 (2013).

    Article  CAS  Google Scholar 

  28. S. Valizadeh, G. Ledergerber, S. Abolhassan, D. Jädernäs, M. Dahlbäck, E.V. Mader, G. Zhou, J. Wright, and L. Hallstadius: Effects of secondary phase particle dissolution on the in-reactor performance of BWR cladding. J. ASTM Int. 8, 729–753 (2014).

    Google Scholar 

  29. C.R.F. Azevedo: Selection of fuel cladding material for nuclear fission reactors. Eng. Failure Anal. 18, 1943–1962 (2011).

    Article  CAS  Google Scholar 

  30. IAEA-TECDOC-966: Waterside corrosion of zirconium alloys in nuclear power plants, 1998.

  31. NIST: X-ray mass attenuation coefficients — Zirconium. (2014). <http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z40.html>.

  32. E.F. Rauch and L. Dupy: Rapid spot diffraction patterns identification through template matching. Arch. Metall. Mater. 50, 87–99 (2005).

    CAS  Google Scholar 

  33. R. Vincent and P.A. Midgley: Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271–282 (1994).

    Article  CAS  Google Scholar 

  34. E.F. Rauch, M. Veron, J. Portillo, D. Bultreys, Y. Maniette, and S. Nicolopoulos: Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc. Microanal. 22, S5–S8 (2008).

    Google Scholar 

  35. E.M. Francis, A. Harte, P. Frankel, S.J. Haigh, D. Jädernäs, J. Romero, L. Hallstadius, and M. Preuss: Iron redistribution in a zirconium alloy after neutron and proton irradiation studied by energy-dispersive x-ray spectroscopy (EDX) using an aberration-corrected (scanning) transmission electron microscope. J. Nucl. Mater. 454, 387–397 (2014).

    Article  CAS  Google Scholar 

  36. J.A.H. Coaquira, H.R. Rechenberg, and J. Mestnik Filho: Structural and Mossbauer spectroscopic study of hexagonal Laves-phase Zr(FexCr1-x)2 alloys and their hydrides. J. Alloys Compd. 288, 42–49 (1999).

    Article  CAS  Google Scholar 

  37. E.E. Havinga, H. Damsma, and P. Hokkeling: Compounds and pseudo-binary alloys with the CuAl2 (C16)-type structure. 1. Preparation and x-ray results. J. Less-Common Met. 27, 169–186 (1971).

    Article  Google Scholar 

  38. R.A. Perez, H. Nakajima, and F. Dyment: Diffusion in alpha-Ti and Zr. Mater. Trans. 44, 2–13 (2003).

    Article  CAS  Google Scholar 

  39. G.P. Sabol, R.J. Comstock, R.A. Weiner, P. Larouere, and R.N. Stanutz: In-reactor corrosion performance of ZIRLOTM and Zircaloy-4. Zirconium in the Nuclear Industry: Tenth International Symposium ASTM STP 1245, A.M. Garde and E.R. Bradley eds.; American Society for Testing and Materials: Philadelphia, 1994; pp. 724–744.

    Chapter  Google Scholar 

  40. V.N. Shishov, M.M. Peregud, A.V. Nikulina, G.P. Kobylyansky, and Z.E. Ostrovsky: Influence of structure—Phase state of Nb containing Zr alloys on irradiation-induced growth. J. ASTM Int. 2, (2005).

  41. L. Balogh, D.W. Brown, P. Mosbrucker, F. Long, and M.R. Daymond: Dislocation structure evolution induced by irradiation and plastic deformation in the Zr–2.5Nb nuclear structural material determined by neutron diffraction line profile analysis. Acta Mater. 60, 5567–5577 (2012).

    Article  CAS  Google Scholar 

  42. I. Groma and G. Monnet: Analysis of asymmetric broadening of x-ray diffraction peak profiles caused by randomly distributed polarized dislocation dipoles and dislocation walls. J. Appl. Crystallogr. 35, 589–593 (2002).

    Article  CAS  Google Scholar 

  43. H. Mughrabi, T. Ungár, W. Kienle, and M. Wilkens: Long-range internal stresses and asymmetric x-ray line-broadening in tensile-deformed [001]-oriented copper single crystals. Philos. Mag. A 53, 793–813 (1986).

    Article  CAS  Google Scholar 

  44. T. Ungár, I. Groma, and M. Wilkens: Asymmetric x-ray line broadening of plastically deformed crystals. II. Evaluation procedure and application to [001]-Cu crystals. J. Appl. Crystallogr. 22, 26–34 (1989).

    Article  Google Scholar 

  45. B.C. Larson and W. Schmatz: Huang diffuse scattering from dislocation loops. Phys. Status Solidi B 267, 267–275 (1980).

    Article  Google Scholar 

  46. P.H. Dederichs: The theory of diffuse x ray scattering and its application to the study of point defects and their clusters. J. Phys. F: Met. Phys. 3, (1973).

  47. S.B. Austerman and K.T. Miller: Dimensional and x-ray diffraction changes in irradiated single crystal BeO. Phys. Status Solidi B 11, 241–253 (1965).

    Article  CAS  Google Scholar 

  48. J.H. Chute and D.G. Walker: Direct observations of damage in neutron irradiated beryllium oxide. J. Nucl. Mater. 14, 187–194 (1964).

    Article  CAS  Google Scholar 

  49. T.M. Sabine, A.W. Pryor, and B.S. Hickman: The scattering of long wavelength neutrons by irradiated beryllium oxide. Philos. Mag. 8, 43–57 (1962).

    Article  Google Scholar 

  50. B.E. Warren and B.L. Averbach: The effect of cold-work distortion on x-ray patterns. J. Appl. Phys. 21, 595 (1950).

    Article  CAS  Google Scholar 

  51. M. Wilkens: The mean square stress for restrictedly random distributions of dislocations in a cylindrical body. Acta Met. 17, 1155–1159 (1969).

    Article  Google Scholar 

  52. M. Wilkens: The determination of density and distribution of dislocations in deformed single crystals from broadened x-ray diffraction profiles. Phys. Status Solidi A 2, 359–370 (1970).

    Article  Google Scholar 

  53. T. Ungár, G. Tichy, J. Gubicza, and R.J. Hellmig: Correlation between subgrains and coherently scattering domains. Powder Diffr. 20, 366–375 (2012).

    Article  CAS  Google Scholar 

  54. T. Ungár, J. Gubicza, G. Ribarik, and A. Borbely: Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34, 298–310 (2001).

    Article  Google Scholar 

  55. G. Ribárik: Ph.D. Dissertation, Eötvös Loránd University, 2008.

  56. Y. Idrees, Z. Yao, M.A. Kirk, and M.R. Daymond: In situ study of defect accumulation in zirconium under heavy ion irradiation. J. Nucl. Mater. 433, 95–107 (2013).

    Article  CAS  Google Scholar 

  57. S.J. Pennycook and B.M. von Ardenne: Scanning Transmission Electron Microscopy (Springer, New York, 2011).

    Book  Google Scholar 

  58. G.M. Hood: Point defect diffusion in alpha-Zr. J. Nucl. Mater. 159, 149–175 (1988).

    Article  CAS  Google Scholar 

  59. M. Griffiths: Comments on precipitate stability in neutron-irradiated Zircaloy-4. J. Nucl. Mater. 170, 294–300 (1990).

    Article  CAS  Google Scholar 

  60. A.T. Motta, K.T. Erwin, O. Delaire, R.C. Birtcher, T. Chu, J. Maser, D.C. Mancini, and B. Lai: Synchrotron radiation study of second-phase particles and alloying elements in zirconium alloys. Zirconium in the nuclear Industry: Thirteenth International Symposium ASTM STP 1423, G.D. Moan and P. Rudling eds.; ASTM International: West Conshohocken, PA, 2002; pp. 59–79.

    Chapter  Google Scholar 

  61. R. Bajaj, B.F. Kammenzind, and D.M. Farkas: Effects of neutron irradiation on the microstructure of alpha-annealed Zircaloy-4. Zirconium in the Nuclear Industry: Thirteenth International Symposium ASTM STP 1423, G.D. Moan and P. Rudling eds.; ASTM International: West Conshohocken, PA, 2002; pp. 400–426.

    Chapter  Google Scholar 

  62. D. Gilbon and C. Simonot: Effect of irradiation on the microstructure of Zircaloy-4. Zirconium in the Nuclear Industry: Eleventh International Symposium ASTM STP 1295, E.R. Bradley and G.P. Gabol eds.; 1996; pp. 521–548.

  63. M. Griffiths, J.F. Mecke, and J.E. Winegar: Evolution of microstructure in zirconium alloys during irradiation. Zirconium in the Nuclear Industry: Eleventh International Symposium ASTM STP 1295, E.R. Bradley and G.P. Gabol eds.; American Society for Testing and Materials: 1996; pp. 580–602.

  64. G.K. Williamson and W.H. Hall: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).

    Article  CAS  Google Scholar 

  65. T. Ungár and A. Borbély: The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 69, 3173–3175 (1996).

    Article  Google Scholar 

  66. M. Griffiths and R.W. Gilbert: The formation of c-component defects in zirconium alloys during neutron-irradiation. J. Nucl. Mater. 150, 169–181 (1987).

    Article  CAS  Google Scholar 

  67. B.V. Cockeram, K.J. Leonard, L.L. Snead, and M.K. Miller: The use of a laser-assisted Local Electrode Atom Probe and TEM to examine the microstructure of Zircaloy and precipitate structure following low dose neutron irradiation at nominally 358 °C. J. Nucl. Mater. 433, 460–478 (2013).

    Article  CAS  Google Scholar 

  68. O.T. Woo and G.J.C. Carpenter: Radiation-induced precipitation in Zircaloy-2. J. Nucl. Mater. 159, 397–404 (1988).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is funded by an EPSRC Leadership Fellowship for the study of irradiation damage in zirconium alloys, and is supported heavily from industrial contributors and especially Westinghouse and Studsvik in terms of both material acquisition and useful discussions. The authors would like to thank Matthew Topping for useful discussions, Gary Was and Ovidiu Toader at the Michigan Ion Beam Laboratory for the use of their facility in the proton irradiation experiments, and the experimental officers at Diamond light source for their aid in implementing the SXRD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Harte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harte, A., Seymour, T., Francis, E.M. et al. Advances in synchrotron x-ray diffraction and transmission electron microscopy techniques for the investigation of microstructure evolution in proton- and neutron-irradiated zirconium alloys. Journal of Materials Research 30, 1349–1365 (2015). https://doi.org/10.1557/jmr.2015.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.65

Navigation