Skip to main content
Log in

Transmission electron microscopy characterization of dislocation loops in irradiated zirconium

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Characterization of irradiation defects is of great importance to mitigate irradiation damage, reduce irradiation growth and tune mechanical properties in Zr alloys. Here, we describe a practical method to characterize the dislocation loops in irradiated Zr using conventional transmission electron microscopy (TEM). Vacancy or interstitial nature of dislocation loops is determined using the inside and outside contrast method. The habit plane of dislocation loops is determined by tilting the sample to multiple zone axes and judged based on the projected loop shape. The size of \(\left\langle a \right\rangle\) loops is measured by tilting the sample to an edge-on position and the loop number is counted under a weak-beam dark-field TEM condition. \(\left\langle c \right\rangle\) loops have a line contrast under viewing direction of a-axis and a circular shape under viewing direction of c-axis. In addition, a large number of triangle-shaped vacancy platelets (TVPs) were formed on the basal plane. With increasing the irradiation damage from 0.5 to 1.5 dpa, the number density of \(\left\langle a \right\rangle\) loops keeps constant, while the number density of TVPs increased significantly, owing to the anisotropic diffusion and accumulation of point defects within basal plane. The methods introduced here are easy to follow and extend into other related investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gulden TD, Bernstein IM. Dislocation loops in irradiated zirconium. Philos Mag. 1966;14:1087.

    Article  CAS  Google Scholar 

  2. Maker DM, Eyre BL. Characterization of small perfect dislocation loops by transmission electron microscopy. Philos Mag. 1972;26:1233.

    Article  Google Scholar 

  3. Liu SM, Beyerlein IJ, Han WZ. Two-dimensional vacancy platelets as precursors for basal dislocation loops in hexagonal zirconium. Nat Commun. 2020;11:5766.

    Article  CAS  Google Scholar 

  4. Northwood DO, Fidleris V, Gilbert RW, Carpenter GJC. Dislocation loop generation and irradiation growth in a zirconium single crystal. J Nucl Mater. 1976;61:123.

    Article  CAS  Google Scholar 

  5. Yang HL, Kano S, McGrady J, Chen DY, Murakami K, Abe H. Microstructural evolution and hardening effect in low-dose self-ion irradiated Zr–Nb alloys. J Nucl Mater. 2020;542:152523.

    Article  CAS  Google Scholar 

  6. Topping M, Harte A, Ungár T, Race CP, Dumbill S, Frankel P, Preuss M. The effect of irradiation temperature on damage structures in proton-irradiated zirconium alloys. J Nucl Mater. 2019;514:358.

    Article  CAS  Google Scholar 

  7. Griffiths M, Loretto MH, Smallman RE. Anisotropic distribution of dislocation loops in HVEM-irradiated Zr. Philos Mag A. 1984;49:613.

    Article  CAS  Google Scholar 

  8. Jostsons A, Kelly PM, Blake RG. The nature of dislocation loops in neytron irradiated zirconium. J Nucl Mater. 1977;66:236.

    Article  CAS  Google Scholar 

  9. Kelly PM, Blake RG. The characterization of dislocation loops in neutron irradiated zirconium. Philos Mag. 1973;28(2):415.

    Article  CAS  Google Scholar 

  10. Carpenter GJC, Watter JF. A study of electron irradiation damage in zirconium using a HVEM. J Nucl Mater. 1982;96:213.

    Article  Google Scholar 

  11. Griffiths M, Loretto MH, Smallman RE. Electron damage in zirconium-I. Defect structure and loop character. J Nucl Mater. 1983;115:313.

    Article  CAS  Google Scholar 

  12. Zu XT, Sun K, Atzmon M, Wang LM, You LP, Wan FR, Busby JT, Was GS, Adamson RB. Effect of proton and Ne irradiation on the microstructure of Zircaloy 4. Philos Mag. 2006;85:649.

    Article  Google Scholar 

  13. Idrees Y, Yao Z, Kirk MA, Daymond MR. In situ study of defect accumulation in zirconium under heavy ion irradiation. J Nucl Mater. 2013;433:95.

    Article  CAS  Google Scholar 

  14. Zhang JW, Liu SM, Han WZ. Interfaces reduce dislocation loop formation in irradiated nanolayered Zr-2.5Nb. Scripta Mater. 2021;200:113902.

    Article  CAS  Google Scholar 

  15. Griffiths M, Loretto MH, Smallman RE. Electron damage in zirconiumII. Nucleation and growth of c-component loops. J Nucl Mater. 1983;115:323.

    Article  CAS  Google Scholar 

  16. Adamson RB, Coleman CE, Griffiths M. Irradiation creep and growth of zirconium alloys: a critical review. J Nucl Mater. 2019;521:167.

    Article  CAS  Google Scholar 

  17. Rogerson A. Irradiation growth in zirconium growth in zirconium and its alloys. J Nucl Mater. 1988;159:43.

    Article  CAS  Google Scholar 

  18. Bacon DJ. Point defects and clusters in the HCP metals: their role in the dose transition. J Nucl Mater. 1993;206:249.

    Article  CAS  Google Scholar 

  19. Li Y, Ghoniem N. Cluster dynamics modeling of irradiation growth in single crystal Zr. J Nucl Mater. 2020;540:152312.

    Article  CAS  Google Scholar 

  20. Francis E, Babu RP, Harte A, Martin TL, Frankel P, Jädernäs D, Romero J, Hallstadius L, Bagot PAJ, Moody MP, Preuss M. Effect of Nb and Fe on damage evolution in a Zr-alloy during proton and neutron irradiation. Acta Mater. 2019;165:603.

    Article  CAS  Google Scholar 

  21. Cockeram BV, Leonard KJ, Byun TS, Snead LL, Hollenbeck JL. Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 377–440 °C. J Nucl Mater. 2014;449:69.

    Article  CAS  Google Scholar 

  22. Yao ZW, Daymond M, Di S, Idrees Y. Irradiation induced defect clustering in zircaloy-2. Appl Sci. 2017;7:854.

    Article  Google Scholar 

  23. Yu H, Yao Z, Idrees Y, Zhang HK, Kirk MA, Daymond MR. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation. J Nucl Mater. 2017;491:232.

    Article  CAS  Google Scholar 

  24. Naceri SE, Izerrouken M, Sari A, Ryelandt S, Menchi O, Ghamnia M. Effect of 165-keV Ar-ion irradiation on microstructural and mechanical properties of zircaloy-4. J Radioanal Nucl Chem. 2020;323(2):817.

    Article  CAS  Google Scholar 

  25. Groves GW, Kelly A. Interstitial dislocation loops in magnesium oxide. Philos Mag. 1961;6:1527.

    Article  CAS  Google Scholar 

  26. Jenkins ML. Characterisation of radiation-damage microstructures by TEM. J Nucl Mater. 1994;216:124.

    Article  CAS  Google Scholar 

  27. Maher DM, Eyre BL. Neutron irradiation damage in molybdenum. Philos Mag. 1971;23:409.

    Article  CAS  Google Scholar 

  28. Foll H, Wilkens M. A simple method for the analysis of dislocation loops by means of the inside-outside contrast on transmission electron micrograph. Phys Stat Sol. 1975;31:519.

    Article  Google Scholar 

  29. Carpenter GJC. Unsafe orientations for the characterisation of dislocation. Phys Stat Sol. 1976;37:K61.

    Article  Google Scholar 

  30. Yang TS, Yu GP, Chen LJ. The Characterization of nitrogen-ion-irradiation induced dislocation loops in zirconium. Phys Stat Sol. 1985;92:399.

    Article  CAS  Google Scholar 

  31. Stoller RE, Toloczko MB, Was GS, Certain AG, Dwaraknath S, Garner FA. On the use of SRIM for computing radiation damage exposure. Nucl Instrum Methods Phys Res B. 2013;310:75.

    Article  CAS  Google Scholar 

  32. Hulse R, Race CP. An atomistic modelling study of the properties of dislocation loops in zirconium. J Nucl Mater. 2021;546:152752.

    Article  CAS  Google Scholar 

  33. Buckley SN, Bullough R, Hayns MR. The direct observation of irradiation damage in zirconium and its alloys. J Nucl Mater. 1980;89:283.

    Article  CAS  Google Scholar 

  34. Xu D, Wirth BD, Li M, Kirk MA. Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals. Acta Mater. 2012;60:4286.

    Article  CAS  Google Scholar 

  35. Woo CH, Liu X. Atomistic calculation of point-defect diffusion anisotropy and irradiation growth in α-zirconium. Philos Mag. 2007;87:2355.

    Article  CAS  Google Scholar 

  36. Ungár T, Frankel P, Ribárik G, Race CP, Preuss M. Size-distribution of irradiation-induced dislocation-loops in materials used in the nuclear industry. J Nucl Mater. 2021;550:152945.

    Article  Google Scholar 

  37. Woo CH. Dislocation bias in an anisotropic diffusion medium and irradiation growth. J Nucl Mater. 1983;119:219.

    Article  CAS  Google Scholar 

  38. Christensen M, Wolf W, Freeman C, Wimmer E, Adamson RB, Griffiths M, Mader EV. Vacancy loops in breakaway irradiation growth of zirconium: Insight from atomistic simulations. J Nucl Mater. 2020;529:151946.

    Article  CAS  Google Scholar 

  39. Christensen M, Wolf W, Freeman C, Wimmer E, Adamson RB, Hallstadius L, Cantonwine PE, Mader EV. Diffusion of point defects, nucleation of dislocation loops, and effect of hydrogen in hcp-Zr: Ab initio and classical simulations. J Nucl Mater. 2015;460:82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51922082 and 51971170) and the 111 Project of China (Grant No. BP2018008).

Author information

Authors and Affiliations

Authors

Contributions

Si-Mian Liu performed the experiments under the guidance of Wei-Zhong Han; all authors discussed and contributed to the writing and revisions.

Corresponding author

Correspondence to Wei-Zhong Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SM., Han, WZ. Transmission electron microscopy characterization of dislocation loops in irradiated zirconium. Tungsten 3, 470–481 (2021). https://doi.org/10.1007/s42864-021-00110-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00110-9

Keywords

Navigation