Skip to main content
Log in

Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

  • Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper provides an overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. Finally, STEM techniques for void, cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. S.J. Zinkle and L.L. Snead: Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44(1), 241–267 (2014).

    Article  CAS  Google Scholar 

  2. R.L. Klueh and D.R. Harries: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications (ASTM, 2001).

  3. Critical Issues Report and Roadmap for the Advanced Radiation-Resistant Materials Program, Electric Power Research Institute Report 1026482, West Conshohocken, PA, 2012.

  4. S.J. Zinkle and J.T. Busby: Structural materials for fission and fusion energy. Mater. Today 12, 12–19 (2009).

    Article  CAS  Google Scholar 

  5. G. Gupta, Z. Jiao, A.N. Ham, J.T. Busby, and G.S. Was: Microstructural evolution of proton irradiated T91. J. Nucl. Mater. 351(1–3), 162–173 (2006).

    Article  CAS  Google Scholar 

  6. A. Bhattacharya, E. Meslin, J. Henry, C. Pareige, B. Decamps, C. Genevois, D. Brimbal, and A. Barbu: Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe–Cr alloys. Acta Mater. 78, 394–403 (2014).

    Article  CAS  Google Scholar 

  7. K.G. Field, L.M. Barnard, C.M. Parish, J.T. Busby, D. Morgan, and T.R. Allen: Dependence on grain boundary structure of radiation induced segregation in a 9 wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 435, 172–180 (2013).

    Article  CAS  Google Scholar 

  8. J.P. Wharry, Z. Jiao, V. Shankar, J.T. Busby, and G.S. Was: Radiation-induced segregation and phase stability in ferritic–martensitic alloy T91. J. Nucl. Mater. 417(1–3), 140–144 (2011).

    Article  CAS  Google Scholar 

  9. J.P. Wharry and G.S. Was: A systematic study of radiation-induced segregation in ferritic-martensitic alloys. J. Nucl. Mater. 442, 7–16 (2013).

    Article  CAS  Google Scholar 

  10. J.R. Michael, S.J. Plimpton, and A.D. Romig: Parallel simulation of electron-solid interactions—A rapid aid for electron-microscope data interpretation. Ultramicroscopy 51(1–4), 160–167 (1993).

    Article  CAS  Google Scholar 

  11. J.R. Michael, D.B. Williams, C.F. Klein, and R. Ayer: The measurement and calculation of X-ray spatial resolution obtained in the analytical electron microscope. J. Microsc. 160(1), 41–53 (1990).

    Article  CAS  Google Scholar 

  12. S.J. Plimpton, J.R. Michael, and A.D. Romig: Parallel simulation of electron-solid interaction for electron-microscopy modeling. J. Supercomput. 6(2), 139–151 (1992).

    Article  Google Scholar 

  13. D.B. Williams and B.C. Carter: Transmission Electron Microscopy (Springer, New York, NY, 2009).

    Book  Google Scholar 

  14. K.G. Field, B.D. Miller, H.J.M. Chichester, K. Sridharan, and T.R. Allen: Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 445, 143–148 (2014).

    Article  CAS  Google Scholar 

  15. J. Penisten Wharry: The mechanism of radiation-induced segregation in ferritic-martensitic steels, University of Michigan, 2012.

  16. M. Watanabe, D.W. Ackland, A. Burrows, C.J. Kiely, D.B. Williams, O.L. Krivanek, N. Dellby, M.F. Murfitt, and Z. Szilagyi: Improvements in the x-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. Microsc. Microanal. 12(6), 515–526 (2006).

    Article  CAS  Google Scholar 

  17. G. Cliff and G.W. Lorimer: Quantitative-analysis of thin specimens. J. Microsc. 103, 203–207 (1975).

    Article  Google Scholar 

  18. R.D. Carter, D.L. Damcott, M. Atzmon, G.S. Was, S.M. Bruemmer, and E.A. Kenik: Quantitative analysis of radiation-induced grain-boundary segregation measurements. J. Nucl. Mater. 211, 70–84 (1994).

    Article  CAS  Google Scholar 

  19. M. Bachhav, L. Yao, G.R. Odette, and E.A. Marquis: Microstructural changes in a neutron-irradiated Fe–6 at.%Cr alloy. J. Nucl. Mater. 453, 334–339 (2014).

    Article  CAS  Google Scholar 

  20. M. Bachhav, G.R. Odette, and E.A. Marquis: Microstructural changes in a neutron-irradiated Fe-15 at.%Cr alloy. J. Nucl. Mater. 454, 381–386 (2014).

    Article  CAS  Google Scholar 

  21. R. Hu, G.D.W. Smith, and E.A. Marquis: Effect of grain boundary orientation on radiation-induced segregation in a Fe-15.2 at.% Cr alloy. Acta Mater. 61, 3490–3498 (2013).

    Article  CAS  Google Scholar 

  22. E.A. Marquis, R. Hu, and T. Rousseau: A systematic approach for the study of radiation-induced segregation/depletion at grain boundaries in steels. J. Nucl. Mater. 413(1), 1–4 (2011).

    Article  CAS  Google Scholar 

  23. E.A. Marquis, S. Lozano-Perez, and V. De Castro: Effects of heavy-ion irradiation on the grain boundary chemistry of an oxide-dispersion strengthened Fe–12wt.% Cr alloy. J. Nucl. Mater. 417, 257–261 (2011).

    Article  CAS  Google Scholar 

  24. C.M. Parish and M.K. Miller: Aberration-corrected x-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT. Microsc. Microanal. 20(2), 613–626 (2014).

    Article  CAS  Google Scholar 

  25. M. Haider, P. Hartel, H. Muller, S. Uhlemann, and J. Zach: Current and future aberration correctors for the improvement of resolution in electron microscopy. Philos. Trans. R. Soc., A 367(1903), 3665–3682 (2009).

    Article  CAS  Google Scholar 

  26. U. Dahmen, R. Erni, V. Radmilovic, C. Kisielowski, M.D. Rossell, and P. Denes: Background, status and future of the transmission electron aberration-corrected microscope project. Philos. Trans. R. Soc., A 367(1903), 3795–3808 (2009).

    Article  CAS  Google Scholar 

  27. S.J. Pennycook, M.F. Chisholm, A.R. Lupini, M. Varela, A.Y. Borisevich, M.P. Oxley, W.D. Luo, K. van Benthem, S.H. Oh, D.L. Sales, S.I. Molina, J. Garcia-Barriocanal, C. Leon, J. Santamaria, S.N. Rashkeev, and S.T. Pantelides: Aberration-corrected scanning transmission electron microscopy: From atomic imaging and analysis to solving energy problems. Philos. Trans. R. Soc., A 367(1903), 3709–3733 (2009).

    Article  CAS  Google Scholar 

  28. P.G. Kotula, D.O. Klenov, and H.S. von Harrach: Challenges to quantitative multivariate statistical analysis of atomic-resolution x-Ray spectral. Microsc. Microanal. 18(4), 691–698 (2012).

    Article  CAS  Google Scholar 

  29. C.M. Parish, R.M. White, J.M. LeBeau, and M.K. Miller: Response of nanostructured ferritic alloys to high-dose heavy ion irradiation. J. Nucl. Mater. 445(1–3), 251–260 (2014).

    Article  CAS  Google Scholar 

  30. M.W. Chu, S.C. Liou, C.P. Chang, F.S. Choa, and C.H. Chen: Emergent chemical mapping at atomic-column resolution by energy-dispersive x-ray spectroscopy in an aberration-corrected electron microscope. Phys. Rev. Lett. 104(19), 196101 (2010).

    Article  CAS  Google Scholar 

  31. J. Ringnalda, A. Genc, and L. Kovarik: The effect of probe correctors on the analytical results of non-ideal samples. Microsc. Microanal. 20(Suppl. S3), 566–567 (2014).

    Article  Google Scholar 

  32. R. Schäublin: Nanometric crystal defects in transmission electron microscopy. Microsc. Res. Tech. 69(5), 305–316 (2006).

    Article  CAS  Google Scholar 

  33. D.E. Newbury: Electron-excited energy dispersive x-ray spectrometry at high speed and at high resolution: Silicon drift detectors and microcalorimeters. Microsc. Microanal. 12(6), 527–537 (2006).

    Article  CAS  Google Scholar 

  34. D.E. Newbury: The revolution in energy dispersive x-ray spectrometry: spectrum imaging at output count rates above 1 MHz with the silicon drift detector on a scanning electron microscope. Spectroscopy 24(7), 32 (2009).

    CAS  Google Scholar 

  35. D. Klenov, B. Freitag, H.S. von Harrach, A.J. D’Alfonso, and L.J. Allen: Chemical mapping at the atomic level using energy dispersive x-ray spectroscopy. Microsc. Microanal. 17(Suppl. 2), 598–599 (2011).

    Article  Google Scholar 

  36. P. Schlossmacher, D.O. Klenov, B. Freitag, and H.S. von Harrach: Enhanced detection sensitivity with a new windowless XEDS system for AEM based on silicon drift detector technology. Microsc. Today 18, 14–20 (2010).

    Article  CAS  Google Scholar 

  37. H.S. von Harrach, P. Dona, B. Freitag, H. Soltau, A. Niculae, and M. Rohde: An integrated silicon drift detector system for FEI Schottky field emission transmission electron microscopes. Microsc. Microanal. 16(Suppl. 2), 208–209 (2010).

    Google Scholar 

  38. C. Jeanguillaume and C. Colliex: Spectrum image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28(1–4), 252–257 (1989).

    Article  Google Scholar 

  39. P.G. Kotula, M.R. Keenan, and J.R. Michael: Automated analysis of SEM x-ray spectral images: A powerful new microanalysis tool. Microsc. Microanal. 9(1), 1–17 (2003).

    Article  CAS  Google Scholar 

  40. C.M. Parish: Multivariate statistics applications in scanning transmission electron microscopy x-ray spectrum imaging. In Advances in Imaging and Electron Physics, Vol. 168, P.W. Hawkes ed.; 2011; pp. 249–295.

  41. M.R. Keenan: Multivariate analysis of spectral images composed of count data. In Techniques and Applications of Hyperspectral Image Analysis, H.F. Grahn and P. Geladi eds.; John Wiley & Sons: Chichester, 2007; pp. 89–126.

    Chapter  Google Scholar 

  42. M.R. Keenan and P.G. Kotula: Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf. Interface Anal. 36(3), 203–212 (2004).

    Article  CAS  Google Scholar 

  43. M.R. Keenan and P.G. Kotula: Optimal scaling of TOF-SIMS spectrum-images prior to multivariate statistical analysis. Appl. Surf. Sci. 231–232, 240–244 (2004).

    Article  CAS  Google Scholar 

  44. H.F. Kaiser: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200 (1958).

    Article  Google Scholar 

  45. M.H. Van Benthem and M.R. Keenan: Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems. J. Chemom. 18(10), 441–450 (2004).

    Article  CAS  Google Scholar 

  46. M.G. Burke, M. Watanabe, D.B. Williams, and J.M. Hyde: Quantitative characterization of nanoprecipitates in irradiated low-alloy steels: Advances in the application of FEG-STEM quantitative microanalysis to real materials. J. Mater. Sci. 41(14), 4512–4522 (2006).

    Article  CAS  Google Scholar 

  47. E.P. Gorzkowski, M. Watanabe, H.M. Chan, and M.P. Harmer: Effect of liquid phase chemistry on single-crystal growth in PMN-35PT. J. Am. Ceram. Soc. 89(7), 2286–2294 (2006).

    CAS  Google Scholar 

  48. A.A. Herzing, M. Watanabe, J.K. Edwards, M. Conte, Z.R. Tang, G.J. Hutchings, and C.J. Kiely: Energy dispersive x-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discuss. 138, 337–351 (2008).

    Article  CAS  Google Scholar 

  49. C.M. Parish, G.L. Brennecka, B.A. Tuttle, and L.N. Brewer: Quantitative x-ray spectrum imaging of lead lanthanum zirconate titanate PLZT thin-films. J. Am. Ceram. Soc. 91(11), 3690–3697 (2008).

    Article  CAS  Google Scholar 

  50. A.G. Certain, K.G. Field, T.R. Allen, M.K. Miller, J. Bentley, and J.T. Busby: Response of nanoclusters in a 9Cr ODS steel to 1 dpa, 525°C proton irradiation. J. Nucl. Mater. 407, 2–9 (2010).

    Article  CAS  Google Scholar 

  51. C.M. Parish, P.D. Edmondson, Y. Zhang, and M.K. Miller: Direct observation of ion-irradiation-induced chemical mixing. J. Nucl. Mater. 418, 106–109 (2011).

    Article  CAS  Google Scholar 

  52. P. Unifantowicz, R. Schaublin, C. Hebert, T. Plocinski, G. Lucas, and N. Baluc: Statistical analysis of oxide particles in ODS ferritic steel using advanced electron microscopy. J. Nucl. Mater. 422, 131–136 (2012).

    Article  CAS  Google Scholar 

  53. M.R. Keenan: Exploiting spatial-domain simplicity in spectral image analysis. Surf. Interface Anal. 41, 79–87 (2009).

    Article  CAS  Google Scholar 

  54. V.S. Smentkowski, S.G. Ostrowski, and M.R. Keenan: A comparison of multivariate statistical analysis protocols for ToF-SIMS spectral images. Surf. Interface Anal. 41, 88–96 (2009).

    Article  CAS  Google Scholar 

  55. R. Tauler, A. Smilde, and B. Kowalski: Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J. Chemom. 9(1), 31–58 (1995).

    Article  CAS  Google Scholar 

  56. M. Vosough, C. Mason, R. Tauler, M. Jalali-Heravi, and M. Maeder: On rotational ambiguity in model-free analyses of multivariate data. J. Chemom. 20(6–7), 302–310 (2006).

    Article  CAS  Google Scholar 

  57. Y. Dai, G.R. Odette, and T. Yamamoto: 1.06-The effects of helium in irradiated structural alloys. In Comprehensive Nuclear Materials, R.J.M. Konings ed.; Elsevier: Oxford, 2012; pp. 141–193.

    Chapter  Google Scholar 

  58. S.J. Zinkle and N.M. Ghoniem: Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51–52, 55–71 (2000).

    Article  Google Scholar 

  59. G.R. Odette, M.J. Alinger, and B.D. Wirth: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471–503 (2008).

    Article  CAS  Google Scholar 

  60. G.R. Odette and D.T. Hoelzer: Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset. JOM 62(9), 84–92 (2010).

    Article  CAS  Google Scholar 

  61. L. Tan, Y. Katoh, and L.L. Snead: Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe2+ ion irradiation. J. Nucl. Mater. 445(1–3), 104–110 (2014).

    Article  CAS  Google Scholar 

  62. S.E. Donnelly: The density and pressure of helium bubbles in implanted metals: A critical review. Radiat. Eff. 90, 1–47 (1985).

    Article  CAS  Google Scholar 

  63. M.L. Jenkins: Characterization of radiation-damage microstructures by TEM. J. Nucl. Mater. 216, 124–156 (1994).

    Article  CAS  Google Scholar 

  64. M.L. Jenkins and M.A. Kirk: Characterization of Radiation Damage by Transmission Electron Microscopy (Institute of Physics, Bristol, 2001).

    Book  Google Scholar 

  65. E. Ruedl, O. Gautsch, and E. Staroste: Transmission electron-microscopy of He-bubbles in aluminum. J. Nucl. Mater. 62(1), 63–72 (1976).

    Article  CAS  Google Scholar 

  66. W.M. Stobbs: Electron microscopical techniques for the observation of cavities. J. Microsc. 116, 3–13 (1979).

    Article  Google Scholar 

  67. K. Fukushima, H. Kawakatsu, and A. Fukami: Fresnel fringes in electron microscope images. J. Phys. D: Appl. Phys. 7(2), 257–266 (1974).

    Article  Google Scholar 

  68. M.H. Loretto and R.E. Smallman: Defect Analysis in Electron Microscopy (Halsted, London, 1975).

    Google Scholar 

  69. B. Yao, D.J. Edwards, R.J. Kurtz, G.R. Odette, and T. Yamamoto: Multislice simulation of transmission electron microscopy imaging of helium bubbles in Fe. J. Electron Microsc. 61(6), 393–400 (2012).

    Article  CAS  Google Scholar 

  70. M.C. Brandes, L. Kovarik, M.K. Miller, and M.J. Mills: Morphology, structure, and chemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel. J. Mater. Sci. 47, 3913–3923 (2012).

    Article  CAS  Google Scholar 

  71. F. Krumeich, E. Müller, and R.A. Wepf: Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy. Micron 49, 1–14 (2013).

    Article  CAS  Google Scholar 

  72. M.K. Miller, L. Longstreth-Spoor, and K.F. Kelton: Detecting density variations and nanovoids. Ultramicroscopy 111, 469–472 (2011).

    Article  CAS  Google Scholar 

  73. Q. Li, C.M. Parish, K.A. Powers, and M.K. Miller: Helium solubility and bubble formation in a nanostructured ferritic alloy. J. Nucl. Mater. 445, 165–174 (2014).

    Article  CAS  Google Scholar 

  74. P.D. Edmondson, C.M. Parish, Y. Zhang, A. Hallén, and M.K. Miller: Helium bubble distributions in a nanostructured ferritic alloy. J. Nucl. Mater. 434(1–3), 210–216 (2013).

    Article  CAS  Google Scholar 

  75. B. Yao, D.J. Edwards, and R.J. Kurtz: TEM characterization of dislocation loops in irradiated bcc Fe-based steels. J. Nucl. Mater. 434(1–3), 402–410 (2013).

    Article  CAS  Google Scholar 

  76. S.I. Porollo, A.M. Dvoriashin, A.N. Vorobyev, and Y.V. Konobeev: The microstructure and tensile properties of Fe-Cr alloys after neutron irradiation at 400°C to 5.5–7.1 dpa. J. Nucl. Mater. 256, 247–253 (1998).

    Article  CAS  Google Scholar 

  77. J. Chen, P. Jung, W. Hoffelner, and H. Ullmaier: Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress. Acta Mater. 56, 250–258 (2008).

    Article  CAS  Google Scholar 

  78. S.L. Dudarev, R.R. Bullough, and P.M. Derlet: Effect of the α-γ phase transition on the stability of dislocation loops in BCC iron. Phys. Rev. Lett. 100, 135503 (2008).

    Article  CAS  Google Scholar 

  79. S.P. Fitzgerald and Z. Yao: Shape of prismatic dislocation loops in anisotropic α-Fe. Philos. Mag. Lett. 89, 581–588 (2009).

    Article  CAS  Google Scholar 

  80. A. Prokhodtseva, B. Decamps, A. Ramar, and R. Schäublin: Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys. Acta Mater. 61, 6958–6971 (2013).

    Article  CAS  Google Scholar 

  81. A. Amali, P. Rez, and J.M. Cowley: High angle annular dark field imaging of stacking faults. Micron 28, 89–94 (1997).

    Article  CAS  Google Scholar 

  82. J.M. Cowley and Y. Huang: De-channelling contrast in annual dark-field STEM. Ultramicroscopy 40, 171–180 (1992).

    Article  Google Scholar 

  83. Y. Miyajima, M. Mitsuhara, S. Hata, H. Nakashima, and N. Tsuji: Quantification of internal dislocation density using scanning transmission electron microscopy in ultrafine grained pure aluminum fabricated by severe plastic deformation. Mater. Sci. Eng., A 528, 776–779 (2010).

    Article  CAS  Google Scholar 

  84. D.D. Perovic, C.J. Rossouw, and A. Howie: Imaging elastic strains in high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy 52, 353–359 (1993).

    Article  CAS  Google Scholar 

  85. J. Pešička, A. Aghajani, C. Somsen, A. Hartmaier, and G. Eggeler: How dislocation substructures evolve during long-term creep of a 12% Cr tempered martensitic ferritic steel. Scr. Mater. 62, 353–356 (2010).

    Article  CAS  Google Scholar 

  86. P.J. Phillips, M.C. Brandes, M.J. Mills, and M. De Graef: Diffraction contrast STEM of dislocation: Imaging and simulations. Ultramicroscopy 111, 1483–1487 (2011).

    Article  CAS  Google Scholar 

  87. D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff, and A.R. Kaysser-Pyzalla: Effect of processing parameters on the evolution of dislocation density and subgrain size of a12%Cr heat resistant steel during creep at 650°C. Mater. Sci. Eng., A 528, 1372–1381 (2011).

    Article  CAS  Google Scholar 

  88. C.J. Humphreys: Fundamental concepts of STEM imaging. Ultramicroscopy 7, 7–12 (1981).

    Article  CAS  Google Scholar 

  89. D.M. Maher and D.C. Joy: The formation and interpretation of defect images from crystalline materials in a scanning transmission electron microscope. Ultramicroscopy 1, 239–253 (1976).

    Article  CAS  Google Scholar 

  90. L. He, Y. Zhai, C. Liu, C. Jiang, I. Szlufarska, B. Tyburska-Puschel, K. Sridharan, and P. Voyles: High-resolution scanning transmission electron microscopy study of black spot defects in ion irradiated silicon carbide. Microsc. Microanal. 20(S3), 1824–1825 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was sponsored by: the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (CMP); the U.S. DOE’s Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program (KGF); US DOE, Office of Nuclear Energy Nuclear Energy University Program (NEUP), awards 10-172 (KGF/AGC) and 10-678 (JPW); US DOE, Nuclear Energy Research Initiative, award 08-055 (JPW); and US DOE, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517, as part of ATR National Scientific User Facility experiment 13-419 (JPW). Part of the microscopy research was conducted as part of a user project supported by ORNL’s Center for Nanophase Materials Sciences (CNMS), which is an Office of Science User Facility. APT, FIB, and Pt-ion irradiations were conducted using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Neutron irradiations on Fe–Cr–Al alloys were carried out in the HFIR, a user facility funded by Department of Energy’s Basic Energy Sciences.

CMP acknowledges the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (NCSU Titan G2 S/TEM). CMP thanks Dr. D.T. Hoelzer of ORNL for providing the samples of the extruded 14YWT nanostructured ferritic alloy, Prof. A. Hallén of the Royal Institute of Technology, Kista, Sweden for performing the helium ion implantation, Prof. J.M. LeBeau, Dr. Xiahan Sang and Dr. Yi Liu, NCSU, for assistance with the NCSU Titan, and Dr. Y. Zhang, ORNL, for Pt-irradiated sample. KGF thanks Y. Yamamoto of ORNL for providing Fe–Cr–Al samples for irradiation and would like to thank the Irradiated Materials Examination and Testing (IMET) facility and Low Activation Materials Development and Analysis (LAMDA) laboratory staff for their continuing support of the research enclosed. JPW acknowledges Dr. G.S. Was, Dr. O. Toader, and Dr. F. Naab at the University of Michigan for their assistance with proton and Fe++ ion irradiations and for providing T91 and Fe-9Cr ODS specimens. JPW acknowledges the use of the Microscopy and Characterization Suite (MaCS) at the Center for Advanced Energy Studies (CAES), with the assistance of M. Swenson (Boise State) and oversight of Dr. Y. Wu (Boise State).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janelle P. Wharry.

Additional information

b)Previously at Pacific Northwest National Laboratory, Richland, Washington 99354, USA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parish, C.M., Field, K.G., Certain, A.G. et al. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys. Journal of Materials Research 30, 1275–1289 (2015). https://doi.org/10.1557/jmr.2015.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.32

Navigation