Skip to main content
Log in

Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The ability of Trichoderma atroviride F-534 to utilize plant waste byproducts derived from processing of vegetables and fruits, as the major source of organic carbon and nitrogen for growth and protease production, was tested. The submerged cultivation of T. atroviride F-534 in the mineral base of the Czapek–Dox medium supplemented with plant waste byproducts resulted into copious biomass formation and was accompanied by secretion of several proteolytic enzymes. Zymography analysis of fungal culture filtrates showed that the high-molecular weight (HMW) protease(s) (from 100 kDa to 230 kDa) represent the major portion of secreted enzymes. Serine-type proteases and metalloproteases were predominant, although all known types of proteolytic enzymes were detected dependent on the type of inducer (substrate). The most conspicuous feature of secreted proteases was that the zymography patterns were unique for each plant material tested. These results confirm our previous finding obtained with purified proteins. Results also suggest that HMW protease(s) may participate in the heterotrophic/saprophytic/mode of life of this fungus. Their identity remains, however, obscure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agosin, E., Aguileram, J. M. (1998). Industrial production of active propagules of Trichoderma for agricultural uses. In G. E. Harman, C. P. Kubicek (Eds.), Trichoderma and Glio-cladium. Enzymes, biological control and commercial applications (pp. 205–227). London, UK: Taylor &Francis.

    Google Scholar 

  • Atanasova, L., Le Crom, S., Gruber, S., Coulpier, F., Seidl-Seiboth, V., Kubicek, C. P., Druzhinina, I. S. (2013). Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics, 14, 121. DOI: 10.1186/1471-2164-14-121.

    Article  CAS  Google Scholar 

  • Baldo, A., Monod, M., Mathy, A., Cambier, L., Bagut, E. T., Defaweux, V., Symoens, F., Antoinen, N., Mignon, B. (2012). Mechanisms of skin adherence and invasion by dermatophytes. Mycoses, 55, 218–223. DOI: 10.1111/j.1439-0507.2011.02081.x.

    Article  CAS  Google Scholar 

  • Beagle-Ristaino, J. E., Papavizas, G. C. (1985a). Biological control of Rhizoctonia stem canker and black scurf of potato. Phytopatology, 75, 560–563.

    Article  Google Scholar 

  • Beagle-Ristaino, J. E., Papavizas, G. C. (1985b). Survival and proliferation of propagules of Trichoderma spp. and Gliocla-dium virens in soil and in plant rhizospheres. Phytopatology, 75, 729–732.

    Article  Google Scholar 

  • Benítez, T., Rincón, A. M., Limón, M. C., Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260.

    Google Scholar 

  • Cal, S., Quesada, V., Garabaya, C., López-Otín, C. (2003). Polyserase-I, a human polyprotease with the ability to generate independent serine protease domains from a single translation product. Proceedings of the National Academy of Sciences of the USA, 100, 9185–9190. DOI: 10.1073/pnas.1633 392100.

    Article  CAS  Google Scholar 

  • Charney, J., Tomarelli, R. M. (1947). A colorimetric method for the determination of the proteolytic activity of duodenal juice. The Journal of Biological Chemistry, 171, 501–505.

    CAS  Google Scholar 

  • Czapek, F. (1902). Untersnehengen über die Stiekstoff Gewinnung und Eiweißbildung der Pflanzen. Beitraege zur Chemischen Physiologie und Pathologie, 1, 540–560. (in German)

    Google Scholar 

  • De Marco, J. L., Felix, C. R. (2002). Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches’ broom disease. BMC Biochemistry, 3, 3. DOI: 10.1186/1471-2091-3-3.

    Article  Google Scholar 

  • Delgado-Jarana, J., Rincón, A. M., Benítez, T. (2002). As-partyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology, 148, 1305–1315. DOI: 10.1099/00221287-148-5-1305.

    Article  CAS  Google Scholar 

  • Dox, A. W. (1910). The intracellular enzymes of Penicillium and Aspergillus with special reference to those of P. camem-berti. United States Department of Agriculture, Bureau of Animal Industry, Bulletin, 120, 120–170.

    Google Scholar 

  • Druzhinina, I. S., Shelest, E., Kubicek, C. P. (2012). Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiology Letters, 337, 1–9. DOI: 10.1111/j.1574-6968.2012.02665.x.

    Article  CAS  Google Scholar 

  • Eijsink, V., Hoell, I., & Vaaje-Kolstada, G. (2010). Structure and function of enzymes acting on chitin and chitosan. Biotechnology &Genetic Engineering Reviews, 27, 331–366. DOI: 10.1080/02648725.2010.10648156.

    Article  Google Scholar 

  • Farnell, E., Rousseau, K., Thornton, D. J., Bowyer, P., Herrick, S. E. (2012). Expression and secretion of Aspergillus fumigatus proteases are regulated in response to different protein substrates. Fungal Biology, 116, 1003–1012. DOI: 10.1016/j.funbio.2012.07.004.

    Article  CAS  Google Scholar 

  • Geremia, R. A., Goldman, G. H., Jacobs, D., Ardiles, W., Vila, S. B., Van Montagu, M., Herrera-Estrella, A. (1993). Molecular characterization of the proteinase-encoding gene, prbo, related to mycoparasitism by Trichoderma harzianum. Molecular Microbiology, 8, 603–613. DOI: 10.1111/j.1365-2958.1993.tb01604.x.

    Article  CAS  Google Scholar 

  • Grinyer, J., McKay, M., Nevalainen, H., Herbert, B. R. (2004). Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Current Genetics, 45, 163–169. DOI: 10.1007/s00294-003-0474-4.

    Article  CAS  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., Lorito, M. (2004). Trichoderma species–opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56. DOI: 10.1038/nrmicro797.

    Article  CAS  Google Scholar 

  • Harris, W. A. (1962). Determination of amino nitrogen, pyrroli-done carboxylic acid nitrogen, total nitrogen with ninhydrin. Journal of the American Society of Sugar Beet Technology, 12, 200–209.

    Article  CAS  Google Scholar 

  • Hjeljord, L., Tronsmo, A. (1998). Trichoderma and Gliocla-dium in biological control: an overview. In G. E. Harman, C. P. Kubicek (Eds.), Trichoderma and Gliocladium. Enzymes, biological control and commercial applications (pp. 131–152). London, UK: Taylor &Francis.

    Google Scholar 

  • Karlsson, C. H., Andersson, M. L., Collin, M., Schmidtchen, A., Björck, L., Frick, I. M. (2007). SufA—a novel subtilisin-like serine proteinase of Finegoldia magna. Microbiology, 153, 4208–4218. DOI: 10.1099/mic.0.2007/010322-0.

    Article  CAS  Google Scholar 

  • Kredics, L., Antal, Z., Szekeres, A., Hatvani, L., Manczinger, L., Vágvölgyi, C., & Nagy, E. (2005). Extracellular pro-teases of Trichoderma species. A review. Acta Microbiologica et Immunologica Hungarica, 52, 169–184. DOI: 10.1556/amicr.52.2005.2.3.

    Article  CAS  Google Scholar 

  • Kubicek, C. P., Penttilä, M. (1998). Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In G. E. Harman, C. P. Kubicek (Eds.), Trichoderma and Gliocladium. Enzymes, Biological Control and Commercial Applications (pp. 49–72). London, UK: Taylor &Francis.

    Google Scholar 

  • Landowski, C. P., Huuskonen, A., Wahl, R., Westerholm-Parvinen, A., Kanerva, A., Hänninen, A. L., Salovuori, N., Penttilä, M., Natunen, J., Ostermeier, C., Helk, B., Saarinen, J., Saloheimo, M. (2015). Enabling low cost biopharmaceu-ticals: A systematic approach to delete proteases from a well-known protein production host Trichoderma reesei. PLoS One, 10, e0134723. DOI: 10.1371/journal.pone.0134723.

  • López-Otín, C., Bond, J. S. (2008). Proteases: Multifunctional enzymes in life and disease. The Journal of Biological Chemistry, 283, 30433–30437. DOI: 10.1074/jbc.r800035200.

    Article  Google Scholar 

  • Markovich, N. A., Kononova, G. L. (2003). Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: a review. Applied Biochemistry and Microbiology, 39, 341–351. DOI: 10.1023/a:1024502431592.

    Article  CAS  Google Scholar 

  • Mosolov, V. V., & Valueva, T. A. (2006). Participation of proteolytic enzymes in the interaction of plants with phy-topathogenic microorganisms. Biochemistry (Moscow), 71, 838–845. DOI: 10.1134/s0006297906080037.

    Article  CAS  Google Scholar 

  • Nagornyy, V. D. (2013). Soil and plant laboratory analysis. Moscow, Russia: Peoples’ Friendship University of Russia.

    Google Scholar 

  • Nielsen, M. L., Vermeulen, M., Bonaldi, T., Cox, J., Moroder, L., Mann, M. (2008). Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nature Methods, 5, 459–460. DOI: 10.1038/nmeth0608-459.

    Article  CAS  Google Scholar 

  • Olejníková, P., Hudecová, D., Burgstaller, W., Kryštofová, S., Varecka, L. (2011). Transient excretion of succinate from Tri-choderma atroviride submerged mycelia reveals the complex movements and metabolism of carboxylates. Antonie Van Leeuwenhoek, 100, 55–66. DOI: 10.1007/s10482-011-9564-3.

    Article  Google Scholar 

  • Olmedo-Monfil, V., Mendoza-Mendoza, A., Gómez, I., Cortés, C., Herrera-Estrella, A. (2002). Multiple environmental signals determine the transcriptional activation of the my-coparasitism related gene prb1 in Trichoderma atroviride. Molecular Genetics and Genomics, 267, 703–712. DOI: 10.1007/s00438-002-0703-4.

    Article  CAS  Google Scholar 

  • Papavizas, G. C., Dunn, M. T., Lewis, J. A., Beagle-Ristaino, J. E. (1984). Liquid fermantation technology for experimental production of biocontrol fungi. Phytopatology, 74, 1171–1175.

    Article  CAS  Google Scholar 

  • Pozo, M. J., Baek, J. M., García, J. M., & Kenerley, C. M. (2004). Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genetics and Biology, 41, 336–348. DOI: 10.1016/j. fgb.2003.11.002.

    Article  CAS  Google Scholar 

  • Rao, M. B., Tanksale, A. M., Ghatge, M. S., Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597–635.

    CAS  Google Scholar 

  • Reithner, B., Ibarra-Laclette, E., Mach, R. L., & Herrera-Estrella, A. (2011). Identification of Mycoparasitism-Related Genes in Trichoderma atroviride. Applied and Environmental Microbiology, 77, 4361–4370. DOI: 10.1128/aem.00129-11.

    Article  CAS  Google Scholar 

  • Schäfer, T., Kirk, O., Borchert, T. V., Fuglsang, C. C. (2005). Enzymes for technical Applications. In S. R. Fahnestock, A. Steinbüchel (Eds.), Biopolymers (pp. 377–437). New York, NY, USA: Wiley.

    Google Scholar 

  • Schumacher, B. A. (2002). Methods for determination of total organic carbon (TOC) in soils and sediments. Las Vegas, NV, USA: United States Environmental Protection Agency, Environmental Sciences Division, National Exposure Research Laboratory.

    Google Scholar 

  • Seidl, V., Song, L., Lindquist, E., Gruber, S., Koptchinskiy, A., Zeilinger, S., Schmoll, M., Martínez, P., Sun, J., Grigoriev, I., Herrera-Estrella, A., Baker, S. E., Kubicek, C. P. (2009). Transcriptomic response of the mycoparasitic fungus Tricho-derma atroviride to the presence of a fungal prey. BMC Ge-nomics, 10, 567. DOI: 10.1186/1471-2164-10-567.

    Article  Google Scholar 

  • Šimkovic, M., Gdovinová, A., Zemková, Z., & Varecka, L. (2012). Properties of secreted protease from vegetative Tri-choderma atroviride mycelia cultivated with protein inducer reveal a complex protein-recognition mechanism. Antonie Van Leeuwenhoek, 101, 253–265. DOI: 10.1007/s10482-011-9629-3.

    Article  Google Scholar 

  • Stricker, A. R., Mach, R. L., de Graaff, L. H. (2008). Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Applied Microbiology and Biotechnology, 78, 211–220. DOI: 10.1007/s00253-007-1322-0.

    Article  CAS  Google Scholar 

  • Suarez, B., Rey, M., Castillo, P., Monte, E., Llobell, A. (2004). Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Applied Microbiology and Biotechnology, 65, 46–55. DOI: 10.1007/s00253-004-1610-x.

    Article  CAS  Google Scholar 

  • Suárez, M. B., Sanz, L., Chamorro, M. I., Rey, M., González, F. J., Llobell, A., & Monte, E. (2005). Proteomic analysis of secreted proteins from Trichoderma harzianum. Identification of a fungal cell wall-induced aspartic protease. Fungal Genetics and Biology, 42, 924–934. DOI: 10.1016/j.fgb.2005.08.002.

    Article  Google Scholar 

  • Suárez, M. B., Vizcaíno, J. A., Llobell, A., Monte, E. (2007). Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Current Genetics, 51, 331–342. DOI: 10.1007/s00294-007-0130-5.

    Article  Google Scholar 

  • Szekeres, A., Kredics, L., Antal, Z., Kevei, F., Manczinger, L. (2004). Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiology Letters, 233, 215–222. DOI: 10.1111/j.1574-6968.2004. tb09485.x.

    Article  CAS  Google Scholar 

  • Takeda, N., Kistner, C., Kosuta, S., Winzer, T., Pitzschke, A., Groth, M., Sato, S., Kaneko, T., Tabata, S., Parniske, M. (2007). Proteases in plant root symbiosis. Phytochemistry, 68, 111–121. DOI: 10.1016/j.phytochem.2006.09.022.

    Article  CAS  Google Scholar 

  • Uchikoba, T., Mase, T., Arima, K., Yonezawa, H., Kaneda, M. (2001). Isolation and characterization of a trypsin-like protease from Trichoderma viride. Biological Chemistry, 382, 1509–1513. DOI: 10.1515/bc.2001.185.

    Article  CAS  Google Scholar 

  • Uckoo, R. M., Jayaprakasha, G. K., Nelson, S. D., Patil, B. S. (2011). Rapid simultaneous determination of amines and organic acids in citrus using high-performance liquid chro-matography. Talanta, 83, 948–954. DOI: 10.1016/j.talanta. 2010.10.063.

    Article  CAS  Google Scholar 

  • Viterbo, A., Ramot, O., Chemin, L., Chet, I. (2002). Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek, 81, 549–556. DOI: 10.1023/a:1020553421740.

    Article  CAS  Google Scholar 

  • Viterbo, A., Harel, M., & Chet, I. (2004). Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiology Letter, 238, 151–158. DOI: 10.1111/j.1574-6968.2004.tb09750.x.

    CAS  Google Scholar 

  • Walkley, A., Black, I. A. (1934). An examination of Degtjar-eff method for determining soil organic matter, and proposed modification of the chromic acid tritation method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Šimkovič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma’tat’a, M., Cibulová, A., Varečka, L. et al. Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride. Chem. Pap. 70, 1039–1048 (2016). https://doi.org/10.1515/chempap-2016-0040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0040

Keywords

Navigation