Skip to main content

Advertisement

Log in

Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Gluconobacter oxydans bacteria exhibit a unique metabolism for quick and incomplete oxidation of a wide range of different compounds (aldoses, ketoses, mono- and poly-alcohols, etc.). Such biotransformation efficiency with simple biomass production led to the industrial applications of these bacteria in the production of several important commodities. Their respiratory activity can also be successfully studied and used in the field of bioelectrochemistry. The main aim of this review is to present various strategies to improve selectivity of assays using intact/treated cells of G. oxydans, to introduce the application of G. oxydans-based biosensors in selective monitoring of analytes during biotransformation processes and to provide information about utilizable sugars in fermentation media or in biological oxygen demand value determination. The final part of the review describes potential application of G. oxydans cells in the generation of electricity from complex fuels within microbial fuel cells by advanced direct electron transfer route between bacterial cells and electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, O., Matsushita, K., Shinagawa, E., & Ameyama, M. (1980a). Crystallization and characterization of NADP-dependent D-glucose dehydrogenase from Gluconobacter suboxydans. Agricultural and Biological Chemistry, 44, 301–308.

    CAS  Google Scholar 

  • Adachi, O., Matsushita, K., Shinagawa, E., & Ameyama, M. (1980b). Crystallization and properties of NADP-dependent aldehyde dehydrogenase from Gluconobacter melanogenus. Agricultural and Biological Chemistry, 44, 155–164.

    CAS  Google Scholar 

  • Adachi, O., Tayama, K., Shinagawa, E., Matsushita, K., & Ameyama, M. (1980c). Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxydans. Agricultural and Biological Chemistry, 44, 503–515.

    CAS  Google Scholar 

  • Adachi, O., Ano, Y., Moonmangmee, D., Shinagawa, E., Toyama, H., Theeragool, G., Lotong, N., & Matsushita, K. (1999a). Crystallization and properties of NADPH-dependent L-sorbose reductase from Gluconobacter melanogenus IFO 3294. Bioscience, Biotechnology and Biochemistry, 63, 2137–2143. DOI: 10.1271/bbb.63.2137.

    Article  CAS  Google Scholar 

  • Adachi, O., Toyama, H., & Matsushita, K. (1999b). Crystalline NADP-dependent D-mannitol dehydrogenase from Gluconobacter suboxydans. Bioscience, Biotechnology, and Biochemistry, 63, 402–407. DOI: 10.1271/bbb.63.402.

    Article  CAS  Google Scholar 

  • Adachi, O., Toyama, H., Theeragool, G., Lotong, N., & Matsushita, K. (1999c). Crystallization and properties of NAD-dependent D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3257. Bioscience, Biotechnology, and Biochemistry, 63, 1589–1595. DOI: 10.1271/bbb.63.1589.

    Article  CAS  Google Scholar 

  • Alferov, S. V., Tomashevskaya, L. G., Ponamoreva, O. N., Bogdanovskaya, V. A., & Reshetilov, A. N. (2006). Biofuel cell anode based on the Gluconobacter oxydans bacteria cells and 2,6-dichlorophenolindophenol as an electron transport mediator. Russian Journal of Electrochemistry, 42, 403–404. DOI: 10.1134/s1023193506040185.

    Article  CAS  Google Scholar 

  • Babkina, E., Chigrinova, E., Ponamoreva, O., Alferov, V., & Reshetilov, A. (2006). Bioelectrocatalytic oxidation of glucose by immobilized bacteria Gluconobacter oxydans. Evaluation of water-insoluble mediator efficiency. Electroanalysis, 18, 2023–2029. DOI: 10.1002/elan.200603608.

    Article  CAS  Google Scholar 

  • Bianco, A. (2013). Graphene: Safe or toxic? The two faces of the medal. Angewandte Chemie International Edition, 52, 4986–4997. DOI: 10.1002/anie.201209099.

    Article  CAS  Google Scholar 

  • Bilská, V. (1997). Využitie octových baktérií v biotechnologickom procese pri produkcii organických kyselín. Chemické Listy, 91, 483–486. (in Slovak)

    Google Scholar 

  • Bullen, R. A., Arnot, T. C., Lakeman, J. B., & Walsh, F. C. (2006). Biofuel cells and their development. Biosensors and Bioelectronics, 21, 2015–2045. DOI: 10.1016/j.bios.2006.01.030.

    Article  CAS  Google Scholar 

  • Clomburg, J. M., & Gonzalez, R. (2013). Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends in Biotechnology, 31, 20–28. DOI: 10.1016/j.tibtech.2012.10.006.

    Article  CAS  Google Scholar 

  • Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 107, 2411–2502. DOI: 10.1021/cr050989d.

    Article  CAS  Google Scholar 

  • D’Souza, S. F. (2001). Microbial biosensors. Biosensors and Bioelectronics, 16, 337–353. DOI: 10.1016/s0956-5663(01)00125-7.

    Article  Google Scholar 

  • Damar, K., & Odaci Demirkol, D. (2011). Modified gold surfaces by poly(amidoamine) dendrimers and fructose dehydrogenase for mediated fructose sensing. Talanta, 87, 67–73. DOI: 10.1016/j.talanta.2011.09.042.

    Article  CAS  Google Scholar 

  • De Muynck, C., Pereira, C. S. S., Naessens, M., Parmentier, S., Soetaert, W., & Vandamme, E. J. (2007). The genus Gluconobacter oxydans: comprehensive overview of biochemistry and biotechnological applications. Critical Reviews in Biotechnology, 27, 147–171. DOI: 10.1080/07388550701503584.

    Article  CAS  Google Scholar 

  • Dębowski, M., Zieliński, M., Krzemieniewski, M., Rokicka, M., & Kupczyk, K. (2014). Effectiveness of dairy wastewater treatment in a bioreactor based on the integrated technology of activated sludge and hydrophyte system. Environmental Technology, 35, 1350–1357. DOI: 10.1080/09593330.2013.868528.

    Article  CAS  Google Scholar 

  • Deppenmeier, U., Hoffmeister, M., & Prust, C. (2002). Biochemistry and biotechnological applications of Gluconobacter strains. Applied Microbiology and Biotechnology, 60, 233–242. DOI: 10.1007/s00253-002-1114-5.

    Article  CAS  Google Scholar 

  • Deppenmeier, U., & Ehrenreich, A. (2009). Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. Journal of Molecular Microbiology and Biotechnology, 16, 69–80. DOI: 10.1159/000142895.

    Article  CAS  Google Scholar 

  • Filip, J., Šefčovičová, J., Gemeiner, P., & Tkac, J. (2013). Electrochemistry of bilirubin oxidase and its use in preparation of a low cost enzymatic biofuel cell based on a renewable composite binder chitosan. Electrochimica Acta, 87, 366–374. DOI: 10.1016/j.electacta.2012.09.054.

    Article  CAS  Google Scholar 

  • Filip, J., & Tkac, J. (2014). Is graphene worth using in biofuel cells? Electrochimica Acta, 136, 340–354. DOI: 10.1016/j.electacta.2014.05.119.

    Article  CAS  Google Scholar 

  • Filip, J., Kasák, P., & Tkac, J. (2015). Graphene as a signal amplifier for preparation of ultrasensitive electrochemical biosensors. Chemical Papers, 69, 112–133. DOI: 10.1515/chempap-2015-0051.

    Article  CAS  Google Scholar 

  • Gao, K. L., & Wei, D. Z. (2006). Asymmetric oxidation by Gluconobacter oxydans. Applied Microbiology and Biotechnology, 70, 135–139. DOI: 10.1007/s00253-005-0307-0.

    Article  CAS  Google Scholar 

  • García, J. I., García-Marín, H., & Pires, E. (2014). Glycerol based solvents: synthesis, properties and applications. Green Chemistry, 16, 1007–1033. DOI: 10.1039/c3gc41857j.

    Article  CAS  Google Scholar 

  • Goenka, S., Sant, V., & Sant, S. (2014). Graphene-based nano-materials for drug delivery and tissue engineering. Journal of Controlled Release, 173, 75–88. DOI: 10.1016/j.jconrel.2013.10.017.

    Article  CAS  Google Scholar 

  • Habib, O., Demirkol, D., & Timur, S. (2012). Sol-gel/chitosan/gold nanoparticle-modified electrode in mediated bacterial biosensor. Food Analytical Methods, 5, 188–194. DOI: 10.1007/s12161-011-9248-7.

    Article  Google Scholar 

  • Hölscher, T., & Görisch, H. (2006). Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Journal of Bacteriology, 188, 7668–7676. DOI: 10.1128/jb.01009-06.

    Article  CAS  Google Scholar 

  • Hu, Z. C., Zheng, Y. G., & Shen, Y. C. (2011). Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor. Bioresource Technology, 102, 7177–7182. DOI: 10.1016/j.biortech.2011.04.078.

    Article  CAS  Google Scholar 

  • Ikeda, T., Kurosaki, T., Takayama, K., Kano, K., & Miki, K. (1996). Measurements of oxidoreductase-like activity of intact bacterial cells by an amperometric method using a membrane-coated electrode. Analytical Chemistry, 68, 192–198. DOI: 10.1021/ac950240a.

    Article  CAS  Google Scholar 

  • Ikeda, T., & Kano, K. (2003). Bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells. Biochimica et Biophysica Acta (BBA) — Proteins and Proteomics, 1647, 121–126. DOI: 10.1016/s1570-9639(03)00075-x.

    Article  CAS  Google Scholar 

  • Indzhgiya, E. Y., Ponamoreva, O. N., Alferov, V. A., Reshetilov, A. N., & Gorton, L. (2012). Interaction of ferrocene mediators with Gluconobacter oxydans immobilized whole cells and membrane fractions in oxidation of ethanol. Electroanalysis, 24, 924–930. DOI: 10.1002/elan.201100425.

    Article  CAS  Google Scholar 

  • Kalathil, S., Khan, M. M., Lee, J. T., & Cho, M. H. (2013). Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnology Advances, 31, 915–924. DOI: 10.1016/j.biotechadv.2013.05.001.

    Article  CAS  Google Scholar 

  • Karthikeyan, R., Sathish kumar, K., Murugesan, M., Berchmans, S., & Yegnaraman, V. (2009). Bioelectrocatalysis of Acetobacter aceti and Gluconobacter roseus for current generation. Environmental Science & Technology, 43, 8684–8689. DOI: 10.1021/es901993y.

    Article  CAS  Google Scholar 

  • Katrlák, J., Voštiar, I., Šefčovičová, J., Tkáč, J., Mastihuba, V., Valach, M., Štefuca, V., & Gemeiner, P. (2007). A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring. Analytical and Bioanalytical Chemistry, 388, 287–295. DOI: 10.1007/s00216-007-1211-5.

    Article  CAS  Google Scholar 

  • Kersters, K., Wood, W. A., & De Ley, J. (1965). Polyol dehydrogenases of Gluconobacter oxydans. Journal of Biological Chemistry, 240, 965–974.

    CAS  Google Scholar 

  • Kim, S. R., Park, Y. C., Jin, Y. S., & Seo, J. H. (2013). Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnology Advances, 31, 851–861. DOI: 10.1016/j.biotechadv.2013.03.004.

    Article  CAS  Google Scholar 

  • Kitagawa, Y., Ameyama, M., Nakashima, K., Tamiya, E., & Karube, I. (1987). Amperometric alcohol sensor based on an immobilised bacteria cell membrane. Analyst, 112, 1747–1749. DOI: 10.1039/an9871201747.

    Article  CAS  Google Scholar 

  • Kovalenko, G. A., Tomashevskaya, L. G., Chuenko, T. V., Rudina, N. A., Perminova, L. V., & Reshetilov, A. N. (2011). Synthesis of catalytic filamentous carbon on a nickel/graphite catalyst and a study of the resulting carbon-carbon composite materials in microbial fuel cells. Kinetics and Catalysis, 52, 564–572. DOI: 10.1134/s0023158411040069.

    Article  CAS  Google Scholar 

  • Krajewski, V., Simić, P., Mouncey, N. J., Bringer, S., Sahm, H., & Bott, M. (2010). Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Applied and Environmental Microbiology, 76, 4369–4376. DOI: 10.1128/aem.03022-09.

    Article  CAS  Google Scholar 

  • Kretová, M., & Grones, J. (2005). Charakterizácia a identifikácia octových baktérií. Chemicke Listy, 99, 144–149. (in Slovak)

    Google Scholar 

  • Kubesa, O., Morrisey, K., Mathews, S., Proetta, J., Li, C., Skladal, P., & Hepel, M. (2014). Design of novel biosensors for determination of phenolic compounds using catalyst-loaded reduced graphene oxide electrodes. Mediterranean Journal of Chemistry, 3, 916–928. DOI: 10.13171/mjc.3.3.2014.14.06.12.

    Article  CAS  Google Scholar 

  • Kulhánek, M. (1989). Microbial dehydrogenations of monosaccharides. In L. N. Saul (Ed.), Advances in applied microbiology (Vol. 34, pp. 141–182). Waltham, MA, USA: Academic Press.

    Google Scholar 

  • Lee, S. A., Choi, Y. J., Jung, S. H., & Kim, S. H. (2002). Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemistry, 57, 173–178. DOI: 10.1016/s1567-5394(02)00115-9.

    Article  CAS  Google Scholar 

  • Lei, Y., Chen, W., & Mulchandani, A. (2006). Microbial biosensors. Analytica Chimica Acta, 568, 200–210. DOI: 10.1016/j.aca.2005.11.065.

    Article  CAS  Google Scholar 

  • Li, C., Lesnik, K. L., & Liu, H. (2013). Microbial conversion of waste glycerol from biodiesel production into value-added products. Energies, 6, 4739–4768. DOI: 10.3390/en6094739.

    Article  CAS  Google Scholar 

  • Lobanov, A. V., Borisov, I. A., Gordon, S. H., Greene, R. V., Leathers, T. D., & Reshetilov, A. N. (2001). Analysis of ethanol-glucose mixtures by two microbial sensors: application of chemometrics and artificial neural networks for data processing. Biosensors and Bioelectronics, 16, 1001–1007. DOI: 10.1016/s0956-5663(01)00246-9.

    Article  CAS  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192. DOI: 10.1021/es0605016.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews in Microbiology, 7, 375–381. DOI: 10.1038/nrmicro2113.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews in Microbiology, 4, 497–508. DOI: 10.1038/nrmicro1442.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (2008). The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology, 19, 564–571. DOI: 10.1016/j.copbio.2008.10.005.

    Article  CAS  Google Scholar 

  • Lusta, K. A., & Reshetilov, A. N. (1998). Physiological and biochemical features of Gluconobacter oxydans and prospects of their use in biotechnology and biosensor systems (review). Applied Biochemistry and Microbiology, 34, 307–320.

    Google Scholar 

  • Macauley, S., McNeil, B., & Harvey, L. M. (2001). The genus Gluconobacter and its applications in biotechnology. Critical Reviews in Biotechnology, 21, 1–25. DOI: 10.1080/20013891081665.

    Article  CAS  Google Scholar 

  • Marko-Varga, G., Dominguez, E., Hahn-Hägerdal, B., Gorton, L., Irth, H., De Jong, G. J., Frei, R. W., & Brinkman, U.A.T. (1990). On-line sample clean-up of fermanetation broths and substrates prior to the liquid-chromatographic separation of carbohydrates. Journal ofChromatography A, 523, 173–188. DOI: 10.1016/0021-9673(90)85021-m.

    Article  CAS  Google Scholar 

  • Matsushita, K., Yakushi, T., Takaki, Y., Toyama, H., & Adachi, O. (1995). Generation mechanism and purification of an inactive form convertible in vivo to the active form of quino-protein alcohol dehydrogenase in Gluconobacter suboxydans. Journal of Bacteriology, 177, 6552–6559.

    Article  CAS  Google Scholar 

  • McNeil, B., & Harvey, L. (2005). Energy well spent on a prokaryotic genome. Nature Biotechnology, 23, 186–187. DOI: 10.1038/nbt0205-186.

    Article  CAS  Google Scholar 

  • Meyer, M., Schweiger, P., & Deppenmeier, U. (2013). Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans. Applied Microbiology and Biotechnology, 97, 3457–3466. DOI: 10.1007/s00253-012-4265-z.

    Article  CAS  Google Scholar 

  • Navanietha Krishnaraj, R., Karthikeyan, R., Berchmans, S., Chandran, S., & Pal, P. (2013). Functionalization of electro-chemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells. Electrochimica Acta, 112, 465–472. DOI: 10.1016/j.electacta.2013.08.180.

    Article  CAS  Google Scholar 

  • Ortiz, M. E., Bleckwedel, J., Raya, R. R., & Mozzi, F. (2013). Biotechnological and in situ food production of polyols by lactic acid bacteria. Applied Microbiology and Biotechnology, 97, 4713–4726. DOI: 10.1007/s00253-013-4884-z.

    Article  CAS  Google Scholar 

  • Park, M., Tsai, S. L., & Chen, W. (2013). Microbial biosensors: Engineered microorganisms as the sensing machinery. Sensors, 13, 5777–5795. DOI: 10.3390/s130505777.

    Article  CAS  Google Scholar 

  • Ponomoreva, O. N., Indzhgiya, E. Y., Alferov, V. A., & Reshetilov, A. N. (2010). Efficiency of bioelectrocatalytic oxidation of ethanol by whole cells and membrane fractions of Gluconobacter oxydans bacteria in the presence of mediators of ferrocene series. Russian Journal of Electrochemistry, 46, 1408–1413. DOI: 10.1134/s1023193510120116.

    Article  CAS  Google Scholar 

  • Ponomareva, O. N., Arlyapov, V. A., Alferov, V. A., & Reshetilov, A. N. (2011). Microbial biosensors for detection of biological oxygen demand (a review). Applied Biochemistry and Microbiology, 47, 1–11. DOI: 10.1134/s0003683811010108.

    Article  CAS  Google Scholar 

  • Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society B, Biological Sciences, 84, 260–276. DOI: 10.1098/rspb.1911.0073.

    Article  Google Scholar 

  • Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W. F., Ehrenreich, A., Gottschalk, G., & Deppenmeier, U. (2005). Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nature Biotechnology, 23, 195–200. DOI: 10.1038/nbt1062.

    Article  CAS  Google Scholar 

  • Rafiqul, I. S. M., & Sakinah, A. M. M. (2013). Processes for the production of xylitol-A review. Food Reviews International, 29, 127–156. DOI: 10.1080/87559129.2012.714434.

    Article  CAS  Google Scholar 

  • Raspor, P., & Goranovič, D. (2008). Biotechnological applications of acetic acid bacteria. Critical Reviews in Biotechnology, 28, 101–124. DOI: 10.1080/07388550802046749.

    Article  CAS  Google Scholar 

  • Rengasamy, K., & Berchmans, S. (2012). Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Bioresource Technology, 104, 388–393. DOI: 10.1016/j.biortech.2011.10.092.

    Article  CAS  Google Scholar 

  • Reshetilov, A.N., Donova, M.V., Dovbnya, D.V., Boronin, A. M., Leathers, T. D., & Greene, R. V. (1996). FET-microbial sensor for xylose detection based on Gluconobacter oxydans cells. Biosensors and Bioelectronics, 11, 401–408. DOI: 10.1016/0956-5663(96)82735-7.

    Article  CAS  Google Scholar 

  • Reshetilov, A. N., Iliasov, P. V., Donova, M. V., Dovbnya, D. V., Boronin, A. M., Leathers, T. D., & Greene, R. V. (1997). Evaluation of a Gluconobacter oxydans whole cell biosensor for amperometric detection of xylose. Biosensors and Bioelectronics, 12, 241–247. DOI: 10.1016/s0956-5663(97)85342-0.

    Article  CAS  Google Scholar 

  • Reshetilov, A. N., Donova, M. V., Dovbnya, D. V., Il’yasov, P. V., Boronin, A. M., Leasers, T., & Green, R. (1998a). Membrane-bound dehydrogenases of Gluconobacter oxydans: Sensors for measuring sugars, alcohols, and polyoles. Bulletin of Experimental Biology and Medicine, 126, 702–704. DOI: 10.1007/bf02446066.

    Article  CAS  Google Scholar 

  • Reshetilov, A. N., Lobanov, A. V., Morozova, N. O., Gordon, S. H., Greene, R. V., & Leathers, T. D. (1998b). Detection of ethanol in a two-component glucose/ethanol mixture using a nonselective microbial sensor and a glucose enzyme electrode. Biosensors & Bioelectronics, 13, 787–793. DOI: 10.1016/s0956-5663(98)00043-8.

    Article  CAS  Google Scholar 

  • Reshetilov, A. N., Trotsenko, J. A., Morozova, N. O., Iliasov, P. V., & Ashin, V. V. (2001). Characteristics of Gluconobacter oxydans B-1280 and Pichia methanolica MN4 cell based biosensors for detection of ethanol. Process Biochemistry, 36, 1015–1020. DOI: 10.1016/s0032-9592(01)00141-8.

    Article  CAS  Google Scholar 

  • Reshetilov, A. N. (2005). Microbial, enzymatic, and immune biosensors for ecological monitoring and control of biotechnological processes. Applied Biochemistry and Microbiology, 41, 442–449. DOI: 10.1007/s10438-005-0079-4.

    Article  CAS  Google Scholar 

  • Reshetilov, A., Alferov, S., Tomashevskaya, L., & Ponamoreva, O. (2006). Testing of bacteria Gluconobacter oxydans and electron transport mediators composition for application in biofuel cell. Electroanalysis, 18, 2030–2034. DOI: 10.1002/elan.200603624.

    Article  CAS  Google Scholar 

  • Ricelli, A., Baruzzi, F., Solfrizzo, M., Morea, M., & Fanizzi, F. P. (2007). Biotransformation of patulin by Gluconobacter oxydans. Applied and Environmental Microbiology, 73, 785–792. DOI: 10.1128/aem.02032-06.

    Article  CAS  Google Scholar 

  • Rogers, K. R. (2006). Recent advances in biosensor techniques for environmental monitoring. Analytica Chimica Acta, 568, 222–231. DOI: 10.1016/j.aca.2005.12.067.

    Article  CAS  Google Scholar 

  • Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30, 279–291. DOI: 10.1007/s10295-003-0049-x.

    Article  CAS  Google Scholar 

  • Schenkmayerová, A., Illésová, A., Šefčovičová, J., Štefuca, V., Bučko, M., Vikartovská, A., Gemeiner, P., Tkac, J., & Katrlík, J. (2014). Whole-cell Gluconobacter oxydans biosensor for 2-phenylethanol biooxidation monitoring. Analytica Chimica Acta. (in press)

  • Šefčovičová, J., Filip, J., Gemeiner, P., Vikartovská, A., Pätoprsty, V., & Tkac, J. (2011). High performance microbial 3-D bionanocomposite as a bioanode for a mediated biosensor device. Electrochemistry Communications, 13, 966–968. DOI: 10.1016/j.elecom.2011.06.013.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., Filip, J., Mastihuba, V., Gemeiner, P., & Tkac, J. (2012). Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor. Biotechnology Letters, 34, 1033–1039. DOI: 10.1007/s10529-012-0875-x.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., & Tkac, J. (2015). Application of nanomaterials in microbial-cell biosensor constructions. Chemical Papers, 69, 42–53. DOI: 10.2478/s11696-014-0602-2.

    Google Scholar 

  • Šefčovičová, J., Filip, J., & Tkac, J. (2015). Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor. Chemical Papers, 69, 176–182. DOI: 10.1515/chempap-2015-0012.

    Google Scholar 

  • Stojković, I. J., Stamenković, O. S., Povrenović, D. S., & Veljković, V. B. (2014). Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 32, 1–15. DOI: 10.1016/j.rser.2014.01.005.

    Article  CAS  Google Scholar 

  • Su, L., Jia, W. Z., Hou, C. J., & Lei, Y. (2011). Microbial biosensors: A review. Biosensors and Bioelectronics, 26, 1788–1799. DOI: 10.1016/j.bios.2010.09.005.

    Article  CAS  Google Scholar 

  • Svitel, J., Curilla, O., & Tkac, J. (1998). Microbial cell-based biosensor for sensing glucose, sucrose or lactose. Biotechnology and Applied Biochemistry, 27, 153–158.

    CAS  Google Scholar 

  • Švitel, J., Tkáč, J., Voštiar, I., Navrátil, M., Štefuca, V., Bučko, M., & Gemeiner, P. (2006). Gluconobacter in biosensors: applications of whole cells and enzymes isolated from Gluconobacter and Acetobacter to biosensor construction. Biotechnology Letters, 28, 2003–2010. DOI: 10.1007/s10529-006-9195-3.

    Article  CAS  Google Scholar 

  • Svitel, J., Tkac, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009). Microbial biosensors and biofuel cells based on Acetobacter and Gluconobacter cells. Hauppauge, NY, USA: Nova Science Publishers.

    Google Scholar 

  • Takayama, K., Kurosaki, T., & Ikeda, T. (1993). Mediated electrocatalysis at a biocatalyst electrode based on a bacterium, Gluconobacter industrius. Journal of Electroanalytical Chemistry, 356, 295–301. DOI: 10.1016/0022-0728(93)80529-q.

    Article  CAS  Google Scholar 

  • Tamiya, E., Karube, I., Kitagawa, Y., Ameyama, M., & Nakashima, K. (1988). Alcohol-FET sensor based on a complex cell membrane enzyme system. Analytica Chimica Acta, 207, 77–84. DOI: 10.1016/s0003-2670(00)80784-9.

    Article  CAS  Google Scholar 

  • Tkáč, J., Gemeiner, P., Švitel, J., Benikovský, T., Šturdík, E., Vala, V., Petruš, L., & Hrabárová, E. (2000a). Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Analytica Chimica Acta, 420, 1–7. DOI: 10.1016/s0003-2670(00)01001-1.

    Article  Google Scholar 

  • Tkáč, J., Švitel, J., Novák, R., & Šturdík, E. (2000b). Triglyceride assay by amperometric microbial biosensor: Sample hydrolysis and kinetic approach. Analytical Letters, 33, 2441–2452. DOI: 10.1080/00032710008543200.

    Article  Google Scholar 

  • Tkac, J., Vostiar, I., Gemeiner, P., & Sturdik, E. (2002). Monitoring of ethanol during fermentation using a microbial biosensor with enhanced selectivity. Bioelectrochemistry, 56, 127–129. DOI: 10.1016/s1567-5394(02)00054-3.

    Article  CAS  Google Scholar 

  • Tkac, J., Vostiar, I., Gorton, L., Gemeiner, P., & Sturdik, E. (2003). Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosensors and Bioelectronics, 18, 1125–1134. DOI: 10.1016/s0956-5663(02)00244-0.

    Article  CAS  Google Scholar 

  • Tkáč, J., Štefuca, V., & Gemeiner, P. (2005). Biosensors with immobilised microbial cells using amperometric and thermal detection principles. In V. Nedović & R. Willaert (Eds.), Applications of cell immobilisation biotechnology (Vol. 8B, pp. 549–566). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Tkac, J., Svitel, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009). Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry, 76, 53–62. DOI: 10.1016/j.bioelechem.2009.02.013.

    Article  CAS  Google Scholar 

  • Treu, B. L., & Minteer, S. D. (2008). Isolation and purification of PQQ-dependent lactate dehydrogenase from Gluconobacter and use for direct electron transfer at carbon and gold electrodes. Bioelectrochemistry, 74, 73–77. DOI: 10.1016/j.bioelechem.2008.07.005.

    Article  CAS  Google Scholar 

  • Valach, M., Katrlík, J., Šturdík, E., & Gemeiner, P. (2009). Ethanol Gluconobacter biosensor designed for flow injection analysis: Application in ethanol fermentation off-line monitoring. Sensors and Actuators B: Chemical, 138, 581–586. DOI: 10.1016/j.snb.2009.02.017.

    Article  CAS  Google Scholar 

  • Wang, J., & Hutchins-Kumar, L. D. (1986). Cellulose-acetate coated mercury film electrodes for anodic-stripping voltammetry. Analytical Chemistry, 58, 402–407. DOI: 10.1021/ac00293a031.

    Article  CAS  Google Scholar 

  • Wang, H. M., & Ren, Z. Y. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31, 1796–1807. DOI: 10.1016/j.biotechadv.2013.10.001.

    Article  CAS  Google Scholar 

  • Winkelhausen, E., & Kuzmanova, S. (1998). Microbial conversion of D-xylose to xylitol. Journal of Fermentation and Bioengineering, 86, 1–14. DOI: 10.1016/s0922-338x(98)80026-3.

    Article  CAS  Google Scholar 

  • Wu, X. S., Wang, X. Y., & Lu, W. Y. (2014). Genomescale reconstruction of a metabolic network for Gluconobacter oxydans 621H. Biosystems, 117, 10–14. DOI: 10.1016/j.biosystems.2014.01.001.

    Article  CAS  Google Scholar 

  • Yakushi, T., & Matsushita, K. (2010). Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Applied Microbiology and Biotechnology, 86, 1257–1265. DOI: 10.1007/s00253-010-2529-z.

    Article  CAS  Google Scholar 

  • Ye, L., Haemmerle, M., Olsthoorn, A.J.J., Schuhmann, W., Schmidt, H. L., Duine, J. A., & Heller, A. (1993). High current density “wired” quinoprotein glucose dehydrogenase electrode. Analytical Chemistry, 65, 238–241. DOI: 10.1021/ac00051a008.

    Article  CAS  Google Scholar 

  • Zhang, Y. N., Hu, Y. B., Wilson, G. S., Moatti-Sirat, D., Poitout, V., & Reach, G. (1994). Elimination of the acetaminophen interference in implantable glucose sensor. Analytical Chemistry, 66, 1183–1188. DOI: 10.1021/ac00079a038.

    Article  CAS  Google Scholar 

  • Zieliński, L., Deja, S., Jasicka-Misiak, I., & Kafarski, P. (2014). Chemometrics as a tool of origin determination of polish monofloral and multifloral honeys. Journal of Agricultural and Food Chemistry, 62, 2973–2981. DOI: 10.1021/jf4056715.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tkac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertokova, A., Bertok, T., Filip, J. et al. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells. Chem. Pap. 69, 27–41 (2015). https://doi.org/10.1515/chempap-2015-0040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0040

Keywords

Navigation