Skip to main content
Log in

Acid rain-induced oxidative stress regulated metabolic interventions and their amelioration mechanisms in plants

  • Review
  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Increased anthropogenic environmental pollution, one of the serious threats associated with rapid industrial/ economic development leads to enhanced release of SOX and NOX in the troposphere which later combined with moisture and results in acid rain (AR). Recurrence of AR leads an array of alterations in plants that includes inhibited seed germination, growth and productivity, biomass accumulation, photosynthesis, enzyme activities, protein synthesis, gene expression patterns, and over production of active oxygen species (AOS). This over produced AOS damages/ oxidizes to lipids, proteins and nucleic acids, and releases a number of cytotoxic intermediate/ end products thereby alterations in metabolic pathways and inactivation of key enzymes. Additionally, AR upsets the balance between AOS generation and elimination by altering the antioxidant defense system, and consequently oxidative stress in plants. However, in the recent past, few attempts have been made, to ameliorate the adverse impacts of AR in plants. Modulation in the levels of antioxidants for prevention against AOS-induced injuries has been recognized as one of the effective approaches towards AR tolerance. Accumulation of ascorbic acid, carotenoids, phenols and proline, and exogenous addition of calcium, polyamines, growth tonic, salicylic acid and β-aminobutyric acid were shown to be the effective strategies to cope low-pH stress in plants. The present review summarizes information on mechanisms of AR formation, uptake of H+, SO4 and NO3 by plants, AR-induced physiological, biochemical, and molecular changes and their amelioration using potential compounds. Gaps in the existing knowledge on AR-stress in plants, and future research directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedin M.J., Alam M.N., Hossain M.J., Ara N.A. & Haque K.M.F. 2010. Effect of micronutrients on growth and yield of onion under calcareous soil environment. Int. J. Biosci. 2: 95–101.

    Google Scholar 

  • Ayala A., Munoz M.F. & Arguelles S. 2014. Lipid peroxidation: Production, metabolism, and signaling mechanism of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. doi.org/10.1155/2014/360438.

    Google Scholar 

  • Chandra J., Tandon M. & Keshavkant S. 2015. Increased rate of drying reduces metabolic inequity and critical water content in radicles of Cicer arietinum L. Physiol. Mol. Biol. Plants 21: 215–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrakar V., Naithani S.C. & Keshavkant S. 2016. Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. Biologia 71: 367–377.

    Article  CAS  Google Scholar 

  • Chandrakar V., Parkhey S., Dubey A. & Keshavkant S. 2017. Modulation in arsenic-induced lipid catabolism in Glycine max L. using proline, 24-epibrassinolide and diphenylene iodonium. Biologia 72: 292–299.

    Article  CAS  Google Scholar 

  • Chen J., Wang W.H., Liu T.W., Wu F.H. & Zheng H.L. 2013. Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulphuric rich and nitric rich simulated acid rain. Plant Physiol. Biochem. 64: 41–51.

    Article  CAS  PubMed  Google Scholar 

  • Dolatabadian A., Sanavy S.A.M.M., Gholamhoseini M., Joghan A.K., Majdi M. & Kashkooli A.B. 2013. The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiol. Mol. Biol. Plants 19: 189–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebtedaie M. & Shekafandeh A. 2016. Antioxidant and carbohydrate changes of two pomegranate cultivars under deficit irrigation stress. Span. J. Agric. Res. 14: 1–9.

    Article  Google Scholar 

  • Fan H.B. & Wang Y.H. 2000. Effects of simulated acid rain on germination foliar damage chlorophyll contents and seedling growth of five hardwood species growing in China. Forest Ecol. Manag. 126: 321–329.

    Article  Google Scholar 

  • Forde B.G. 2000. Nitrate transporters in plants: structure function and regulation. Biochim. Biophys. Acta. 1465: 219–235.

    Article  CAS  PubMed  Google Scholar 

  • Gabara B., Sklodowska M., Wyrwicka A., Glinska S. & Gapinska M. 2003. Changes in the ultrastructure of chloroplast and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum leaves sprayed with acid rain. Plant Sci. 164: 507–516.

    Article  CAS  Google Scholar 

  • Ginocchio R., Fuente L.M.D., Sanchez P., Bustamant E., Silva Y., Urrestarazu P. & Rodriguez P.H. 2009. Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with coer- rich mine wastes. Environ. Toxicol. Chem. 28: 2069–2081.

    Article  CAS  PubMed  Google Scholar 

  • Heck W.W., Heagle A.S. & Shriner D.S. 1986. Hordeum vulgare exposed to long term fumigation with low concentration of SO2. Physiol. Plantarum 76: 445–450.

    Google Scholar 

  • Hu H., Wang L., Zhou Q. & Huang X. 2016. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice. Environ. Sci. Pollut. Res. 23: 8902–8916.

    Article  CAS  Google Scholar 

  • Kacharava N., Chkhubianishvili E., Badridze G., Chanishvili S. & Mazanishvili L. 2013. Antioxidant response of some Georgian wheat species to simulated acid rain. Aust. J. Crop Sci. 7: 770–776.

    CAS  Google Scholar 

  • Khalid N., Hussain M. & Aqeel M. 2013. Amelioration of adverse effects of simulated acid rain on growth and yield attributes of sunflower (Helianthus annuus L.) by growth tonics. Pak. J. Bot. 45: 1989–1993.

    CAS  Google Scholar 

  • Kobayashi Y., Kobayashi Y., Watanabe T., Shaff J.E., Ohta H., Kochian L.V., Wagatsuma T., Kinraide T.B. & Koyama H. 2013. Molecular and physiological analysis of Al3+ and H+ rhizotoxicities at moderately acidic conditions. Plant Physiol. 163: 180–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama H., Toda T., Yokota S., Zuraida D. & Hara T. 1995. Effects of aluminium and pH on root growth and cell viability in Arabidopsis thaliana strain Landsberg in hydroponic culture. Plant Cell Physiol. 36: 201–205.

    CAS  Google Scholar 

  • Lager I., Andreasson O., Dunbar T.L., Andreasson E., Escobar M.A. & Rasmusson A.G. 2010. Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses. Plant Cell Environ. 33: 1513–1528.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu E.U. & Liu C.P. 2011. Effects of simulated acid rain on the antioxidative system in Cinnamomum philiinense seedlings. Water, Air and Soil Pollut. 215: 127–135.

    Article  CAS  Google Scholar 

  • Liu T., Chen J.A., Wang W., Simon M., Wu F., Hu W., Chen J.B. & Zheng H. 2014. A combined proteomic and transcriptomic analysis on sulphur metabolism pathways of Arabidopsis thaliana under simulated acid rain. Plos One 9: e90120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu T., Jiang X., Shi W., Chen J., Pei Z. & Zheng H. 2011a. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain. Proteomics 11: 2079–2094.

    Article  CAS  PubMed  Google Scholar 

  • Liu T.W., Fu B., Niu L., Chen J., Wang W.H., He J.X., Pei Z.M. & Zheng H.L. 2011b. Comparative proteomic analysis of proteins in response to simulated acid rain in Arabidopsis. J. Proteome Res. 10: 2579–2589.

    Article  CAS  PubMed  Google Scholar 

  • Lv Y., Wang C., Jia Y., Wang W., Ma X., Du J., Pu G. & Tian X. 2014. Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China. Appl. Soil Sci. 79: 1–9.

    Google Scholar 

  • Parkhey S., Naithani S.C. & Keshavkant S. 2012. ROS production and lipid catabolism in desiccating Shorea robusta seeds during aging. Plant Physol. Biochem. 57: 261–267.

    Article  CAS  Google Scholar 

  • Parkhey S., Naithani S.C. & Keshavkant S. 2014. Protein metabolism during ageing in desiccating recalcitrant seeds of Shorea robusta. Acta Physiol. Plant 36: 1649–1659.

    Article  CAS  Google Scholar 

  • Ramlall C., Varghese B., Ramdhani S., Pammenter N., Bhatt A., Berjak P. & Sershen. 2014. Effects of simulated acid rain on germination seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. Physiol. Plantarum 153: 149–160.

    Article  CAS  Google Scholar 

  • Rughani G., Chandra J., Chandrakar V. & Keshavkant S. 2016. Production and in-situ localization of ROS in Pennisetum typhoideum indulged with heavy metal stress. Int. J. Biotech. Bioinfo. Biomed. 1: 9–18.

    Google Scholar 

  • Saenen E., Horemans N., Vanhoudt N., Vandenhove H., Biermans G., Van Hees M., Wannijin J., Vangronsveld J. & Cuypers A. 2013. Effects of pH on uranium uptake and oxidative stress responses induced in Arabidopsis thaliana. Environ. Toxicol. Chem. 32: 2125–2133.

    Article  CAS  PubMed  Google Scholar 

  • Shaukat S.S. & Khan M.A. 2008. Growth and physiological responses of Tomato (Lycopersicon esculentum Mill) to simulated acid rain. Pak. J. Bot. 40: 2427–2435.

    Google Scholar 

  • Shavrukov Y. & Hirai Y. 2015. Good and bad protons: genetic aspects of acidity stress responses in plants. J. Exp. Bot. 67: 15–30.

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui S. 2012. Lead induced genotoxicity in Vigna mungo var. HD-94. Int. J. Saudi. Soc. Agricul. Sci. 11: 107–112.

    CAS  Google Scholar 

  • Singh A. & Agrawal M. 2008. Acid rain and its ecological consequences. J. Exp. Biol. 29: 15–24.

    CAS  Google Scholar 

  • Song H., Xu X., Wang H. & Tao Y. 2011. Protein carbonylation in barley seedling roots caused by aluminium and proton toxicity is supressed by salicylic acid. Russ. J. Plant Physiol. 58: 653–659.

    Article  CAS  Google Scholar 

  • Suomela J.S., Neuvonen S., Ossipova V. & Pihlaji K. 1998. A long-term study of the effects of simulated acid rain on the phenolics of birch foliage. Chemosphere 36: 639–644.

    Article  CAS  Google Scholar 

  • Tsay Y.F., Schroeder J.I., Feldman K.A. & Crawford N.M. 1993. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72: 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Velikova V., Yordanov I. & Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci. 151: 59–66.

    Article  CAS  Google Scholar 

  • Wang L., Huang X. & Zhou Q. 2008. Responses of peroxidases and catalase to acid rain stress during seed germination of rice wheat and rape. Front. Environ. Sci. Eng. 2: 364–369.

    Article  Google Scholar 

  • Wang X., Liu Z., Niu L. & Fu B. 2013. Long term effects of simulated acid rain stress on a staple forest plant Pinus massoniana Lamb: a proteomic analysis. Trees 27: 297–309.

    Article  CAS  Google Scholar 

  • Yadu B., Chandrakar V. & Keshavkant S. 2016. Responses of plants towards fluoride: An overview of oxidative stress and defense mechanism. Flouride 49: 293–302.

    CAS  Google Scholar 

  • Yoshimoto N., Takahashi H., Smith F.W., Yamaya T. & Saito K. 2002. Two distinct high affinity sulphate transporters with different inducibilities mediate uptake of sulphate in Arabidopsis root. The Plant J. 29: 465–473.

    Article  CAS  PubMed  Google Scholar 

  • Yu J.Q., Ye S.F. & Huang L.F. 2002. Effects of simulated acid precipitation on photosynthesis chlorophyll fluorescence and antioxidative enzymes in Cucumis sativus L. Photosynthetica 40: 331–335.

    Article  CAS  Google Scholar 

  • Zhang J.E., Ouyang Y. & Ling D.J. 2007. Impacts of simulated acid rain on cation leaching from the Latosol in South China. Chemosphere 67: 2131–2137.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y., Di T., Xu G., Vhen X., Zeng H., Yan F. & Shen Q. 2009. Adaptation of plasma membrane H+ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell Environ. 32: 1428–1440.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshavkant Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xalxo, R., Sahu, K. Acid rain-induced oxidative stress regulated metabolic interventions and their amelioration mechanisms in plants. Biologia 72, 1387–1393 (2017). https://doi.org/10.1515/biolog-2017-0171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0171

Key words

Navigation