Skip to main content
Log in

Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Studies were carried out to investigate the effect of zinc sulfide nanoparticles on growth and anti-oxidant markers in Brassica juncea. Growth of Brassica júncea seedlings was positively affected by zinc sulfide nanoparticle treatment, with a maximum increase of 49% in shoot dry weight, being recorded at 15 ppm concentration. Increased chlorophyll content and maximal sugar accumulation was also recorded at 15 ppm zinc sulfide nanoparticle treatment. The seedlings treated with 15 ppm and higher concentrations of zinc sulfide nanoparticles recorded increased reduced-glutathione leveis as compared to the untreated seedlings. Higher growth indices of the treated seedlings were associated with improved antioxidant marker leveis, recorded in terms of lower proline accumulation, and reduced hydrogen peroxide & lipid peroxidation leveis. No significant change in total ascorbate content was recorded up to 15 ppm, while a 15% increase was recorded at 100 ppm zinc sulfide nanoparticle treatment. The reduced ascorbate content decreased by just 4.44% at 15 ppm zinc sulfide nanoparticle treatment, while the maximum reduced ascorbate level was recorded at 100 ppm. These observations indicate an alteration in the antioxidant status of the treated seedlings, which is responsible for improved growth profile of the seedlings treated with 15 ppm zinc sulfide nanoparticles, as compared to the seedlings treated with 100 ppm zinc sulfide nanoparticles. The results clearly indicate that zinc sulfide nanoparticles can be used to augment the growth of Brassica júncea seedlings, and this growth stimulatory effect is associated with alterations in antioxidant status of the treated seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikary B.H., Shrestha J. & Baral B.R. 2010. Effects of micronutrients on growth and productivity of maize in acidic soil. Int. Res. J. Appl. Basic Sci. 1: 8–15.

    Google Scholar 

  • Alexieva V., Sergiev I., Mapelli S. & Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24: 1337–1344.

    Article  CAS  Google Scholar 

  • Arora S., Sharma P., Kumar S., Nayan R., Khanna P.K. & Zaidi M.G.H. 2012. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica júncea. Plant Growth Regul. 66: 303–310.

    Article  CAS  Google Scholar 

  • Bates L.S., Waldren R.P. & Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207

    CAS  Google Scholar 

  • Calandra P., Longo A. & Turco-Liveri V. 2003. Synthesis of ultrasmall ZnS nanoparticles by solid-solid reaction in the conflned space of AOT reversed micelles. J. Phys. Chem. B. 107: 25–30.

    Article  CAS  Google Scholar 

  • Da Costa M.V.J. & Sharma P.K. 2015. Influence of titanium dioxide nanoparticles on the photosynthetic and biochemical processes in Oryzo, sativa. inter. J. Recent Scient. Res. 6: 2445–2451.

    Google Scholar 

  • Gao F., Hong F., Liu C., Zheng L., Su M., Wu X., Yang F., Wu C. & Yang P. 2006. Mechanism of nano-anatase Ti02 on promoting photosynthetic carbon reaction of spinach. Biol. Trace Elem. Res. 111 (1-3): 239–53.

    Article  CAS  Google Scholar 

  • Gayou V.L., Salazar-Hernandez B., Delgado Macuil R., Zavala G., Santiago P. & Oliva A. I. 2010. Structural studies of ZnS nanoparticles by high resolution transmission electron microscopy. J. Nano. Res. 9: 125–132

    Article  CAS  Google Scholar 

  • Gerland P., Raftery A.E., Sevcikova H., Li N., Gu D., Spoorenberg T., Alkema L., Fosdick B.K., Chunn J., Lalic N. & Bay G. 2014. World population stabilization unlikely this century. Science 346: 234–237.

    Article  CAS  Google Scholar 

  • Heath R.L. & Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189–198.

    Article  CAS  Google Scholar 

  • Hiscox A.D. & IsraelstamG. S. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57: 1332–1334.

    Article  CAS  Google Scholar 

  • Law M.Y., Charles S.A. & Halliwell B. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochem. J. 210: 899–903.

    CAS  PubMed  Google Scholar 

  • Ma C., Chhikara S., Xing B., Musante C., White J.C. & Dhankher O.P. 2013. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and in-dium oxide exposure. ACS Sustain. Chem. & Engineer. 1 (7): 768–78.

    Article  CAS  Google Scholar 

  • Matysik J., Bhalu B. & Mohanty P. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science 82: 525–532.

    CAS  Google Scholar 

  • May M.J., Vernoux T., Leaver C., Van Montagu M. & Inze D. 1998. Glutathione homeostasis in plants: implications for en-vironmental sensing and plant development. J. Exp. Bot. 49: 649–667.

    CAS  Google Scholar 

  • Mishra V., Mishra R.K., Dikshit A. & Pandey A.C. 2014. Inter-actions of nanoparticles with plants: an emerging perspective in the agriculture industry, pp. 159–180. In: Ahmad P. & Rasool S. (eds), Emerging Technologies and Management of Crop Stress Tolerance: Biological Techniques, Elsevier Aca-demic press, USA.

    Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–10.

    Article  CAS  Google Scholar 

  • Mittler R., Vanderauwera S., Gollery M. & Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490–498.

    Article  CAS  Google Scholar 

  • Mokrasch L.C. 1954. Analysis of hexose phosphates and sugar mixtures with the anthrone reagent. J. Biol. Chem. 208: 55–59.

    CAS  PubMed  Google Scholar 

  • Moron M.S., Depierre J. W. & Mannervik B. 1979. Leveis of glutathione, glutathione reduciase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta 582: 67–78.

    Article  CAS  Google Scholar 

  • Rao S. & Shekhawat G.S. 2014. Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue speciflc accumulation in Brassica júncea. J. Environ. Chem. Engineer. 2: 105–114.

    Article  CAS  Google Scholar 

  • Rico C.M., Hong J., Morales M. I., Zhao L., Barrios A. C., Zhang J.Y., Peralta-Videa J.R. & Gardea-Torresdey J.L. 2013. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defence system and in vivo fluorescence imaging. Environ. Sci. & Technol 47 (11): 5635–5642.

    Article  CAS  Google Scholar 

  • Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K. & Arora S. 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica júncea. Appl. Biochem. Biotechnol. 167 (8): 2225–2233.

    Article  CAS  Google Scholar 

  • Shaw A.K. & Hossain Z. 2013. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93: 906–915.

    Article  CAS  Google Scholar 

  • Tang S.Y. & Cao Y.P. 2003. Effects of spraying different forms of silicon (Si) on growth as stress resistance of rice plants. Sci. Fertil. 2: 16–22.

    Google Scholar 

  • Thimmaiah S.K. 2009. Standard Methods of Biochemical Analysis. Kalyani publishers, New Delhi, pp. 51–53.

    Google Scholar 

  • Vitti A., Nuzzaci M., Scopa A., Tataranni G., Tamburrino I. & Sofo A. 2014. Hormonal response and root architecture in Arabidopsis thaliana subjected to heavy metais. inter. J. Plant Biol. 5: 5226–5232.

    Google Scholar 

  • Xiang C., Werner B.L., E’Lise M.C. & Oliver D.J. 2001. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione leveis. Plant Phys-iol. 126: 564–574.

    Article  CAS  Google Scholar 

  • Yang F., Hong F., You W., Liu C., Gao F., Wu C. & Yang P. 2006. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Element Res. 110: 179–190.

    Article  CAS  Google Scholar 

  • Zheng L., Hong F., Lu S. & Liu C. 2005. Effect of nano-Ti02 on strength of naturally aged seeds and growth of spinach. Biol. Trace Element Res. 104: 83–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Arora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayan, R., Rawat, M., Negi, B. et al. Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea. Biologia 71, 896–902 (2016). https://doi.org/10.1515/biolog-2016-0107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0107

Key words

Navigation