Skip to main content
Log in

Nucleoli migration coupled with cytomixis

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Nucleolus was regarded as a mere ribosome-producing factory for many decades however, in the past two decades; this has come to the light that it is a plurifunctional nuclear domain which plays vital role in many cellular processes. Despite many advances, much remains to be revealed about the nucleolus association with cellular processes. While exploring the chromosomal diversity in the high altitude plants of the Indian cold desert region in North West Himalayas we came across 140 wild plants, out of these, pollen mother cell (PMC) in 31 plants showed the occurrence of additional nucleoli. Coincidently, all these plants also depicted the phenomenon of cytomixis i.e. inter-PMC chromatin material extrusion/transfer among/between adjacent meiocytes. Interestingly, it was noticed that nucleolus accompanied the chromatin material during process of cytomixis. During, and after the migration of nucleolus, change in its shape, size and number has also been discussed. So the current paper here in correlated the inter-PMC migration of nucleolus to the occurrence of cytomixis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastassova-Kristeva M. 1977. The nucleolar cycle in man. J. Cell Sci. 25: 103–110.

    CAS  PubMed  Google Scholar 

  • Anastassova-Kristeva M., Nicoloff H., Kunzel G. & Rieger R. 1977. Nucleolus formation in structurally reconstructed barley karyotypes with six satellite chromosomes. Chromosoma 62: 111–117.

    Article  Google Scholar 

  • Arnoldy W. 1900. Beitraegezurmorphologie der Gymnosper-men. IV. Was sind die “Keimblaschen” oder “Hofmeis-ters_Korperchen” in der Eizelle der Abietineen? Flora 87: 194–204.

    Google Scholar 

  • Basavaiah T. & Murthy T.C.S. 1987. Cytomixis in pollen mother cells of Urochloa panicoides P. Beauv. (Poaceae). Cytologia 52: 69–74.

    Article  Google Scholar 

  • Bedi Y.S. 1990. Cytomixis in woody species. Proc. Indian Natl. Sci. Acad. (Plant Sci.) 100B: 233–238.

    Google Scholar 

  • Belling J. 1921. On counting chromosomes in pollen mother cells. Am. Nat. 55: 573–574.

    Article  Google Scholar 

  • Bellucci M., Roscini C. & Mariani A. 2003. Cytomixis in pollen mother cells of Medicago sativa L. J. Hered. 94: 512–516.

    Article  CAS  PubMed  Google Scholar 

  • Bhandari N. N., Tandon S.L. & Jain S. 1969. Some observations on the cytology and cytomixis in Canavalia DC. Cytologia 34: 22–28.

    Article  Google Scholar 

  • Bhat T.A., Parveen S. & Khan A.H. 2006. MMS-Induced cytomixis in pollen mother cells of broad bean (Vicio, faba L.). Turk. J. Bot. 30: 273–279.

    Google Scholar 

  • Bustamante F.O., Rocha L.C., Torres A.G., Davide L.C., Mittel-mann A. & Techio V.H. 2014. Distribution of rDNA in diploid and polyploid Lolium, multiflorum Lam. and fragile sites in 45s rDNA regions. Crop Sci. 54: 1–9.

    Article  CAS  Google Scholar 

  • Chakravorti A.K. 1960. Idiogram studies with special reference to chromosome nucleolus relationship and its bearing on the cytogenetics of Heliconia. Nucleus 3: 225–250.

    Google Scholar 

  • Cohn N.S. 1969. Elements of Cytology. New York, Harcourt, Brace and World.

    Google Scholar 

  • Darvey N.L. & Driscoll C.J. 1972. Nucleolar behaviour in Triticum. Chromosoma 36: 131–139.

    Google Scholar 

  • De Paula Wilson B.M., San-Martin J.A.B., Boneventi P., Torezan J.M.D. & Vanzela A.L.L. 2005. Functionality of major and minor 45S rDNA sites in different diploid wild species and varieties of sunflowers. Caryologia 58: 374–379.

    Article  Google Scholar 

  • Falistocco E., Tosti N. & Falcinelli M. 1995. Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2ra gametes. J. Hered. 86: 448–453.

    Article  Google Scholar 

  • Fankhauser G. & Humphrey R.R. 1943. Relation between number of nucleoli and number of chromosome sets in animal cells. Proc. Natl. Acad. Sci. USA 29: 344–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farley K.I., Surovtseva Y., Merkel J. & Baserga S.J. 2015. Determinants of mammalian nucleolar architecture. Chromosoma 124: 323–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank D.J. & Roth M.B. 1998. ncl-1 is required for the regulation of cell size and ribosomal RNA synthesis in Caenorhabditis elegans. J. Cell Biol. 140: 1321–1329.

    Article  CAS  Google Scholar 

  • Frank D.J., Edgar B.A. & Roth M.B 2002. The Drosophila melanogaster gene brain tumor negatively regulates cell growth and ribosomal RNA synthesis. Development 129: 399–407.

    CAS  PubMed  Google Scholar 

  • Gates R.R. 1911. Pollen formation in Oenotheragigas. Ann. Bot. 25: 909–940.

    Article  Google Scholar 

  • George S.A. & Lennartz M.R. 1980. Methods for determining ploidy in amphibians: nucleolar number and erythrocyte size 1. Experientia 36: 687–688.

    Article  Google Scholar 

  • Grummt I. 2013. The nucleolus -guardian of cellular homeostasis and genome integrity. Chromosoma 122: 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Guan J.Z., Wang J.J., Cheng Z.H., Liu Y. & Li Z.Y. 2012. Cytomixis and meiotic abnormalities during microsporogenesis are responsible for male sterility and chromosome variations in Houttuynia cordata. Genet. Mol. Res. 11: 121–130.

    Article  PubMed  Google Scholar 

  • Heitz E. 1931. Die Ursache der gesetzmassigen Zahl, Lage, Form, und Grosse pflanzlicher Nucleolen. Planta 12: 774–844.

    Article  Google Scholar 

  • Jimenez R., Burgos M. & Diaz de la Guardia R. 1988. A study of the silver staining significance in mitotic NORs. Heredity 60: 125–127.

    Article  PubMed  Google Scholar 

  • Kachroo P. & Koul A.K. 1999. Progress in Cytogenetics: Professor A.K. Koul commemoration volume. Dehra Dun, India,Bishen Singh Mahendra Pal Singh, 368 pp.

    Google Scholar 

  • Koernicke M. 1901. Uberortsveranderung von Zellkarnern. S.B. Niederhein Ges Natur-U Heilkunde, Bonn A, pp. 14–25.

    Google Scholar 

  • Kumar P. 2010. Exploration of cytomorphological diversity in the members of Polypetalae from Lahaul-Spiti and adjoining areas. Ph.D thesis, Punjabi University, Patiala, Punjab, India https://doi.org/hdl.handle.net. Accessed on 27th February, 2016

    Google Scholar 

  • Kumar P. & Singhal V.K. 2011a. Chromosome number, male meiosis and pollen fertility in selected angiosperms of the cold deserts of Lahaul-Spiti and adjoining areas (Himachal Pradesh, India). Plant Syst. Evol. 297: 271–297.

    Article  Google Scholar 

  • Kumar P. & Singhal V.K. 2011b. Male meiosis, morphometric analysis and distribution pattern of 2x and 4x cytotypes of Ranunculus hirtellus Royle, 1834 (Ranunculaceae) from the cold regions of northwest Himalayas (India). Comp. Cyto-genet. 5: 143–161.

    Google Scholar 

  • Kumar P., Singhal V.K., Kaur D. & Kaur S. 2010. Cytomixis and associated meiotic abnormalities affecting pollen fertility in Clematis orientalis. Biol. Plant. 54: 181–184.

    Article  Google Scholar 

  • Kumar P., Singhal V.K., Rana P.K., Kaur S. & Kaur D. 2011. Cytology of Ranunculus laetus Wall, ex Royle from cold desert regions and adjoining hills of North-west Himalayas. Cary-ologia 64: 25–32.

    Google Scholar 

  • Kumar P., Singhal V.K. & Kaur D. 2012. Impaired male meiosis due to irregular synapsis coupled with cytomixis in a new diploid cytotype of Dianthus angulatus (Caryophyllaceae) from Indian cold deserts. Folia Geobot. 47: 59–68.

    Article  Google Scholar 

  • Kumar P., Rana P.K., Himshikha., Singhal V.K. & Gupta R.C. 2014. Cytogeography and phenomenon of cytomixis in Silene vulgaris from cold regions of Northwest Himalayas (India). Plant Syst. Evol. 300: 831–842.

    Article  Google Scholar 

  • Kumar R., Rana P.K., Himshikha., Kaur D., Kaur M., Singhal V.K., Gupta R.C. & Kumar P. 2015. Structural heterozygosity and cytomixis driven pollen sterility in Anemone rivularis Buch.-Ham. ex DC. from Western Himalaya (India). Caryologia 68: 246–253.

    Article  Google Scholar 

  • Lam Y.W. & Trinkle-Mulcahy L. 2015. New insights into nucleolar structure and function. F1000 Prime Rep. 7: 48.

    Article  CAS  Google Scholar 

  • Lattoo S.K., Khan S., Bamotra S. & Dhar A.K. 2006. Cytomixis imparis meiosis and influences reproductive success in Chloro-phytum comosum (Thunb) Jacq. -An additional strategy and possible implications. J. Biosci. 31: 629–637.

    Article  CAS  PubMed  Google Scholar 

  • Levin D.A. 1973. Accessory nucleoli in microsporocytes of hybrid Phlox. Chromosoma 41: 413.

    Article  Google Scholar 

  • Liu Y., Hui R.K., Deng R.N., Wang J.J., Wang M. & Li Z.Y. 2012. Abnormal male meiosis explains pollen sterility in the polyploid medicinal plant Pinellia ternata (Araceae). Genet. Mol. Res. 11: 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Marks G.E. 1957. The cytology of Oxalis dispar. Chromosoma. 8: 650–670.

    Article  CAS  PubMed  Google Scholar 

  • Maszewski J. & Kwiatkowska M. 1984. Number, size, and transcriptional activity of nucleoli during different periods of interphase in antheridial filaments of Chara vulgaris L. Folia Histochem. Cytobiol. 22: 9–19.

    CAS  Google Scholar 

  • Miglani G.S. 2009. Developmental Genetics. New Delhi, I.K. Publishing House Pvt, Ltd., 780 pp.

    Google Scholar 

  • Montiel E.S., Manrique-Poyato M.I., Rocha-Sanchez S., Lopez-Leon Maria D., Cabrero J., Pe Fectti F. & Camacho JP. 2012. Nucleolus size varies with sex, ploidy and gene dosage in Insects. Physiol. Entomol. pages 1–8 DOI: 10.1111/j.1365-3032.2011.00822.x

    Google Scholar 

  • Montgomery, T.H. 1898. Comparative cytological studies, with special regard to the morphology of the nucleolus. J. Morph. 15: 265–282.

    Article  Google Scholar 

  • Mursalimov S.R. & Deineko E.V. 2011. An ultrastructural study of cytomixis in tobacco pollen mother cells. Protoplasma 248: 717–724.

    Article  PubMed  Google Scholar 

  • Mursalimov S.R. & Deineko E.V. 2015. How cytomixis can form unreduced gametes in tobacco. Plant Syst. Evol. 301: 293–1297.

    Article  CAS  Google Scholar 

  • Mursalimov S.R., Sidorchuk Y.V., Deineko E.V. 2013. New insights into cytomixis: specific cellular features and prevalence in higher plants. Planta 238: 415–423.

    Article  CAS  PubMed  Google Scholar 

  • Mursalimov S., Permyakova N., Deineko E., Houben A. & Demi-dov D. 2015. Cytomixis doesn’t induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. Front. Plant Sci. 6: 846.

    Google Scholar 

  • Olson M.O. & Dundr M. 2015. Nucleolus: structure and function. eLS. 1–9. DOI: 10.1002/9780470015902.a0005975.pub3

    Google Scholar 

  • Paredes S. & Maggert K.A. 2009. Ribosomal DNA contributes to global chromatin regulation. Proc. Natl. Acad. Sci. USA 106: 17829–17834.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pederson T. 2010. The nucleolus. Cold Spring Harb. Perspect. Biol. 3: a000638.

  • Popp W. & Wachtler F. 1983. Changes in nucleolar structure, number and size in cellular activation and inactivation. Observations in human phytohaemagglutinin-treated lymphocytes. Cell Tissue Res. 234: 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Ranjbar M., Roya K. & Samineh N. 2011. Impact of cytomixis on meiosis in Astragalus cyclophyllos Beck (Fabaceae) from Iran. Caryologia 64: 256–264.

    Article  Google Scholar 

  • Schubert I. & Kunzel G. 1990. Position-dependent NOR activity in barley. Chromosoma 99: 352–359.

    Article  Google Scholar 

  • Shaw P. & Brown J. 2012. Nucleoli: composition, function, and dynamics. Plant Physiol. 158: 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Shaw P.J. & Jordan E.G. 1995. The nucleolus. Ann. Rev. Cell Dev. Biol. 11: 93–121.

    Article  CAS  Google Scholar 

  • Singhal V.K. & Kumar P. 2008. Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeate Royle). J. Biosci. 33: 371–380.

    Article  CAS  PubMed  Google Scholar 

  • Singhal V.K., Rana P.K., Kumar P. & Kaur D. 2011. Persistent occurrence of meiotic abnormalities in a new hexaploid cytotype of Thalictrum foetidum, L. from Indian cold deserts. Biologia 66: 458–464.

    Article  Google Scholar 

  • Smetana K. & Busch H. 1974. The nucleolus and nucleolar DNA. In: Busch H. (ed.), The Nucleus. New York, Academic Press.

    Google Scholar 

  • Stepiriski D. 2014. Functional ultrastructure of the plant nucleolus. Protoplasma 251: 1285–1306.

    Article  Google Scholar 

  • Sybenga J. 1972. General Cytogenetics. Amsterdam, North-Holland Publishing Co.

    Google Scholar 

  • Verma R.C. & Raina S.N. 1981. Cytogenetics of Crotalaria V Supernumerary nucleoli in C. agatiflora (Leguminosae). Genetica 56: 75–80.

    Article  Google Scholar 

  • Vilhar B., Vidic T., Jogan N. & Dermastia M. 2002. Genome size and the nucleolar number as estimators of ploidy level in Dactylis glomerata in the Slovenian Alps. Plant Syst. Evol. 234: 1–13.

    Article  CAS  Google Scholar 

  • Warburton D., Atwood K.C. & Henderson A.S. 1976. Variation in the number of genes rDNA among human acrocentric chromosomes: Correlation with frequency of satellite association. Cytogenet. Cell Genet. 17: 221–230.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Singhal, V.K. Nucleoli migration coupled with cytomixis. Biologia 71, 651–659 (2016). https://doi.org/10.1515/biolog-2016-0076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0076

Key words

Navigation