Skip to main content

Advertisement

Log in

Brassinosteroids roles and applications: an up-date

  • Review
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Brassinosteroids are plant steroidal compounds involved in many functions related with plant development, metabolism, signalling and defense against a wide range of biotic and abiotic stresses. Plant architecture, which has a major effect on crop yield, is strongly influenced by brassinosteroids action. Brassinosteroids are recognized as key regulators of plant growth and development involved in a broad spectrum of processes at the molecular, cellular, and physiological levels. These roles suggest that many of the constraints of present agricultural production might be alleviated by manipulation of genetic determinants dealing with brassinosteroids, as well as by its exogenous application. Brassinosteroids are natural, nontoxic, non-genotoxic, biosafe, and eco-friendly, and can therefore be used in agriculture and horticulture to improve the growth, yields, quality, and tolerance of various plants to biotic and abiotic stresses. The present paper comprehensively reviews the latest results in the field of brassinosteroids and envisages future impacts in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

BL:

brassinolide

BR:

brassinosteroid

BRs:

brassinosteroids

CT:

catalase

CS:

catasterone

EBL:

24-epibrassinolide

ET:

ethylene

GPX:

glutathione peroxidase

GR:

glutathione reductase

HBL:

28-homobrassinolide

JA:

jasmonic acid

MDHAR:

monodehydroascorbate reductase

POX:

guaicol peroxidase

SA:

salicylic acid

SOD:

superoxide dismutase

References

  • Ahammed G.J., Zhou Y.H., Xia X.J., Mao W.H., Shi K. & Yu J.Q. 2013. Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biol Plant 57 154–158.

    Article  CAS  Google Scholar 

  • Alam M.M., Hayat S., Ali B. & Ahmad A. 2007. Effect of 28-homobrassinolide on nickel induced changes in Brassica juncea. Photosynthetica 45 139–142.

    Article  CAS  Google Scholar 

  • Albrecht C., Boutrot F., Segonzac C., Schwessinger B., Gimenez-Ibanez S., Chinchilla D., Rathjen J.P., de Vries S.C. & Zipfel C. 2012. Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc. Natl. Acad. Sci. USA 109 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Ali B., Hayat S. & Ahmad A. 2007 28-homobrassinolide ameliorates the saline stress in Cicer arietinum L. Environ. Exp. Bot. 59 217–223.

    Article  CAS  Google Scholar 

  • Ali B., Hasan S.A., Hayat S., Hayat Q., Yadav S., Fariduddin Q. & Ahmad A. 2008a. A role of brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L.). Wilczek. Environ. Exp. Bot. 62 153–159.

    Article  CAS  Google Scholar 

  • Ali B., Hasan S.A., Hayat S., Hayat Q., Yadav S., Fariduddin Q. & Ahmad A. 2008b. A role of brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L.) Wilczek. Environ. Exp. Bot. 62 153–159.

    Article  CAS  Google Scholar 

  • Allen D.J. & Ort D.R. 2001. Impact of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6 36–42.

    Article  CAS  PubMed  Google Scholar 

  • Anuradha S. & Rao S.S.R. 2007. Effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ. 53 465–472.

    Article  CAS  Google Scholar 

  • Bai M.Y., Zhang L.Y., Gampala S.S., Zhu S.W., Song W.Y., Chong K. & Wang Z.Y. 2007. Functions of OsBZR1 and 14–3–3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. USA 104 13839–13844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajguz A. & Hayat S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A. & Piotrowska-Niczyporuk A. 2014. Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol. Biochem. 80 176–83.

    Article  CAS  PubMed  Google Scholar 

  • Belkhadir Y., Jaillais Y., Epple P., Balsemao-Pires E., Dangl J.L. & Chory J. 2012. Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc. Natl. Acad. Sci. USA 109 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Bell E.M., Lin W.C., Husbands A.Y., Yu L., Jaganatha V., Jablonska B., Mangeon A., Neff M.M., Girke T. & Springer P.S. 2012. Arabidopsis LATERAL ORGAN BOUNDARIES negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proc. Natl. Acad. Sci. USA 109 21146–21151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vleesschauwer D., Van Buyten E., Satoh K., Balidion J., Mauleon R., Choi I.R., Vera-Cruz C., Kikuchi S. & Hofte M. 2012. Brassinosteroids antagonize gibberellin- and salicylatemediated root immunity in rice. Plant Physiol. 158 1833–1846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Divi U.K. & Krishna P. 2009. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol. 26 131–136.

    Article  CAS  Google Scholar 

  • Fariduddin Q., Yusuf M., Ahmad I. & Ahmad A. 2014. Brassinosteroids and their role in response of plants to abiotic stresses. Biol. Plant. 58 9–17.

    Article  CAS  Google Scholar 

  • Gendron J.M., Liu J., Fan M., Bai M. Wenkel S. & Springer P.S. 2012. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proc. Natl. Acad. Sci. USA 109 21152–21157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes M.M.A. 2011. Physiological effects related to brassinosteroid application in plants, pp. 193–242. In: Hayat S. & Ahmad A. (eds.) Brassinosteroids: A Class of Plant Hormones. Springer, Dordrecht.

    Chapter  Google Scholar 

  • Grove M.D., Spencer G.F., Rohwedder W.K., Mandava N., Worley J.F., Warthen J.D., Steffens G.L., Flippen-Anderson J.L. & Cook J.C. 1979. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281 216–217.

    Article  CAS  Google Scholar 

  • Hacham Y., Holland N., Butterfield C., Ubeda-Tomas S., Bennett M.J., Chory J. & Savaldi-Goldstein S. 2011. Brassinosteroid perception in the epidermis controls root meristem size. Development 138 839–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan S.A., Hayat S. & Ahmad A. 2011. Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84 1446–1451.

    Article  CAS  PubMed  Google Scholar 

  • Haubrick L.L. & Assmann S.M. 2006. Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ. 29 446–457.

    Article  CAS  PubMed  Google Scholar 

  • Hayat S., Hasan S.A., Yusuf M., Hayat Q. & Ahmad A. 2010. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperaturein Vigna radiata. Environ. Exp. Bot. 69 105–112.

    Article  CAS  Google Scholar 

  • Hopkins W.J. 1995. Physiology of plants under stress, pp. 459–479. In: Hopkins W.J. (ed.). Introduction to Plant Physiology, 3rd edn. John Wiley & Sons, New York.

    Google Scholar 

  • Huang H., Jiang W., Hu Y., Wu P., Zhu J., Liang W., Wang Z.Y. & Lin W. 2012 BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. Mol. Plant 6 456–469.

    Article  CAS  PubMed  Google Scholar 

  • Huang L.F., Zheng J.H., Zhang Y.Y., Hu W.H., Mao W.H., Zhou Y.H. & Yu J.Q. 2006 Diurnal variations in gas exchange, chlorophyll fluorescence quenching and light allocation in soybean leaves: the cause for midday depression in CO2 assimilation. Sci. Hort. 110 214–218.

    Article  CAS  Google Scholar 

  • Janeckzo A., Koscielniak J., Pilipowicz M., Szarek-Lukaszewska G. & Skoczowski A. 2005. Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43 293–298.

    Article  Google Scholar 

  • Janeczko A., Gullner G., Skoczowski A., Dubert F. & Barna B. 2007 Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol. Plant. 51 355–358.

    Article  CAS  Google Scholar 

  • Kagale S., Divi U.K., Krochko J.E., Keller W.A. & Krishna P. 2007. Brassinosteroids confers tolerancein Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Khripach V., Zhabinskii V. & de Groot A. 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 86 441–447.

    Article  CAS  Google Scholar 

  • Lampard G.R., Macalister C.A. & Bergmann D.C. 2008. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Science 322 1113–1116.

    Article  CAS  PubMed  Google Scholar 

  • Li L. & Van Staden J. 1998. Effects of plant growth regulators on the antioxidant systems in callus of two maize cultivars subjected to water stress. Plant Growth Regul. 24 55–66.

    Article  Google Scholar 

  • Li Y.H., Liu Y.J., Xu XL., Jin M., An L.Z. & Zhang H. 2012. Effect of 24-epibrassinolide on drought stress-induced changesin Chorispora bungeana. Biol. Plant. 56 192–196.

    Article  CAS  Google Scholar 

  • Lieselotte D.B., Höfte M. & De Vleesschauwer D. 2014 Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol. Plant 7 943–959.

    Article  CAS  Google Scholar 

  • Lösel R. & Wehling M. 2003. Non genomic actions of steroid hormones. Nat. Rev. Mol. Cell. Bio. 4 46–54.

    Article  CAS  Google Scholar 

  • Maugh T.H. 1981. New chemicals promise larger crops. Science 212 33–34.

    Article  PubMed  Google Scholar 

  • Mazorra L.M., Nuñez M., Hechavarria M., Coll F. & Sanchez-Blanco M.J. 2002. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol. Plant. 45 593–596.

    Article  CAS  Google Scholar 

  • Mitchell J.W., Mandava N., Worley J.F., Plimmer J.R. & Smith M.V. 1970. Brassins: a new family of plant hormones from rape pollen. Nature 225 1065–1066.

    Article  CAS  PubMed  Google Scholar 

  • Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Goller M., Shulaev V. & van Breusegem F. 2011 ROS signaling: the new wave. Trends Plant Sci. 16 300–309.

    Article  CAS  PubMed  Google Scholar 

  • Nahar K., Kyndt T., Hause B., Hofte M. & Gheysen G. 2013. Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Mol. Plant Microbe Interact. 26:106–115.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H., Tanaka A., Tanabata T., Ohtake M., Fujioka S., Nakamura H., Ichikawa H. & Mori M. 2012. SHORT GRAIN 1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol. 158 1208–1219.

    Article  CAS  PubMed  Google Scholar 

  • Nakashita H., Yasuda M., Nitta T., Asami T., Fujioka S., Arai Y., Sekimata K., Takatsuto S., Yamaguchi I. & Yoshida S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33 887–898.

    Article  CAS  PubMed  Google Scholar 

  • Navrot N., Rouhier N., Gelhaye E. & Jacquot J. 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 129 185–195.

    Article  CAS  Google Scholar 

  • Oklešťková J., Rárová L. & Strnad M. 2013. Brassinosteroids and their Biological Activities, pp. 3852–3866. In: Ramawat K.G. & Mérillon J.M. (eds). Natural Products, Springer-Verlag, Berlin.

    Google Scholar 

  • Özdemir F., Bor M., Demiral T. & Turkan I. 2004. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 42 203–211.

    Article  Google Scholar 

  • Ray D.K., Mueller N.D., West P.C. & Foley J.A. 2013 Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS One 8 (6): e66428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T., Morinaka Y., Ohnishi T., Sunohara H., Fujioka S., Ueguchi-Tanaka M., Mizutani M., Sakata K., Takatsuto S. & Matsuoka M. 2006. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat. Biotechnol. 24 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Sharma P. & Bhardwaj R. 2007. Effects of 24-epibrassinolide on growth and metal uptak. Brassica juncea L. under copper metal stress. Acta Physiol. Plant. 29 259–263.

    Article  CAS  Google Scholar 

  • Simonovicova M., Tamas L., Huttova J. & Mistrik I. 2004. Effect of aluminum on oxidative stress related enzymes activities in barley roots. Biol. Plant. 48 261–266.

    Article  CAS  Google Scholar 

  • Sing I. & Shono M. 2005. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 47 111–119.

    Article  CAS  Google Scholar 

  • Teale W.D., Ditengou F.A., Dovzhenko A.D., Li X., Molendijk A.M., Ruperti B., Paponov I. & Palme K. 2008. Auxin as a model for the integration of hormonal signal processing and transduction. Mol. Plant 1 229–237.

    Article  CAS  PubMed  Google Scholar 

  • Upreti K.K. & Murti G.S.R. 2004. Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol. Plant. 48 407–411.

    Article  CAS  Google Scholar 

  • van Esse G.W., van Mourik S., Stigter H., Colette A., Molenaar J. & de Vries S.C. 2012. A mathematical model for BRASSINOSTEROID INSENSITIVE1-mediated signaling in root growth and hypocotyl elongation. Plant Physiol. 160 523–532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vardhini B.V. & Rao S.S.R. 2003. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul. 41 25–31.

    Article  CAS  Google Scholar 

  • Vriet C., Russinova E. & Reuzeau C. 2012. Boosting crop yields with plant steroids. Plant Cell 24 842–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L., Xu Y., Zhang C., Ma Q., Joo S.H., Kim S.K., Xu Z. & Chong K. 2008. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One 3 (10): e3521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X., Zhang J., Yuan M. & Mao T. 2012. Arabidopsis MICROTUBULE DESTABILIZING PROTEIN40 is involved in brassinosteroid regulation of hypocotyl elongation. Plant Cell 24 4012–4025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C., Xu Y., Guo S., Zhu J., Huan Q., Liu H., Wang L., Luo G., Wang X. & Chong K. 2012. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet 8 (4): e1002686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L.Y., Bai M.Y., Wu J., Zhu J.Y., Wang H., Zhang Z., Wang W., Sun Y., Zhao J., Wang Z.Y. et al. 2009. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21 3767–3780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J.H., Huang W.D., Liu Y.P. & Pan Q.H. 2005. Effects of temperature acclimation pre-treatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J. Integ. Plant Biol. 47 959–970.

    Article  Google Scholar 

  • Zhiponova M.K., Vanhoutte I., Boudolf V., Betti C., Dhondt S., Coppens F., Mylle E., Maes S., Gonzalez-Garcia M.P. & Russinova E. 2013. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytol. 197 490–502.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merardo Pujol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coll, Y., Coll, F., Amorós, A. et al. Brassinosteroids roles and applications: an up-date. Biologia 70, 726–732 (2015). https://doi.org/10.1515/biolog-2015-0085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0085

Key words

Navigation