Skip to main content
Log in

Programmed Death of Microglia in Alzheimer’s Disease: Autophagy, Ferroptosis, and Pyroptosis

  • Review
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Increasing evidence has demonstrated that the damage of cell plays an important role in AD. Cell death is a critical phenomenon for physiological functions, which promotes AD pathogenesis. Programmed cell death, including necroptosis, pyroptosis, autophagy, and ferroptosis, have been discovered that have unique biological functions and pathophysiological characteristics. Here, we review the available evidence detailing the mechanisms of programmed microglial death, including pyroptosis, autophagy, and ferroptosis. We also highlight the role of programmed death of microglia during the process of AD and focus on the connection between the disease and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. DeTure, M.A. and D.W. Dickson, The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener, 2019. 14(1): p. 32. doi:https://doi.org/10.1186/s13024-019-0333-5

    Article  Google Scholar 

  2. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement, 2020. doi:https://doi.org/10.1002/alz.12068

  3. Mullane, K. and M. Williams, Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem Pharmacol, 2020. 177: p. 113945. doi:https://doi.org/10.1016/j.bcp.2020.113945

    Article  CAS  Google Scholar 

  4. Sharma, I., et al., Exploring the Focal Role of Pyroptosis in Diabetes Mellitus. Biointerface Research in Applied Chemistry, 2021. 11(5): p. 13557–13572. doi:https://doi.org/10.33263/briac115.1355713572

    Article  CAS  Google Scholar 

  5. Vanden Berghe, T., et al., Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol, 2014. 15(2): p. 135–47. doi:https://doi.org/10.1038/nrm3737

    Article  CAS  Google Scholar 

  6. Yang, W.S. and B.R. Stockwell, Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol, 2016. 26(3): p. 165–176. doi:https://doi.org/10.1016/j.tcb.2015.10.014

    Article  CAS  Google Scholar 

  7. D’Arcy, M.S., Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int, 2019. 43(6): p. 582–592. doi:https://doi.org/10.1002/cbin.11137

    Article  Google Scholar 

  8. Yan, N. and J. Zhang, Iron Metabolism, Ferroptosis, and the Links With Alzheimer’s Disease. Front Neurosci, 2019. 13: p. 1443. doi:https://doi.org/10.3389/fnins.2019.01443

    Article  Google Scholar 

  9. Li, Q., Y. Liu, and M. Sun, Autophagy and Alzheimer’s Disease. Cell Mol Neurobiol, 2017. 37(3): p. 377–388. doi:https://doi.org/10.1007/s10571-016-0386-8

    Article  CAS  Google Scholar 

  10. Li, Y., et al., Interaction between hyperphosphorylated tau and pyroptosis in forskolin and streptozotocin induced AD models. Biomed Pharmacother, 2020. 121: p. 109618. doi:https://doi.org/10.1016/j.biopha.2019.109618

    Article  CAS  Google Scholar 

  11. Louveau, A. [Cerebral lymphatic drainage: implication in the brain immune privilege]. Med Sci (Paris), 2015. 31(11): p. 953–6. doi:https://doi.org/10.1051/medsci/20153111005

    Article  Google Scholar 

  12. Sevenich, L., Brain-Resident Microglia and Blood-Borne Macrophages Orchestrate Central Nervous System Inflammation in Neurodegenerative Disorders and Brain Cancer. Front Immunol, 2018. 9: p. 697. doi:https://doi.org/10.3389/fimmu.2018.00697

    Article  Google Scholar 

  13. Singh, V., et al., Isolation and Characterization of Microglia from Adult Mouse Brain: Selected Applications for ex Vivo Evaluation of Immunotoxicological Alterations Following in Vivo Xenobiotic Exposure. Chemical Research in Toxicology, 2014. 27(5): p. 895–903. doi:https://doi.org/10.1021/tx500046k

    Article  CAS  Google Scholar 

  14. Amor, S., et al., Inflammation in neurodegenerative diseases. Immunology, 2010. 129(2): p. 154–69. doi:https://doi.org/10.1111/j.1365-2567.2009.03225.x

    Article  CAS  Google Scholar 

  15. Zhang, J., et al., Contradictory regulation of macrophages on atherosclerosis based on polarization, death and autophagy. Life Sci, 2021. 276: p. 118957. doi:https://doi.org/10.1016/j.lfs.2020.118957

    Article  CAS  Google Scholar 

  16. Russell, R.C., H.X. Yuan, and K.L. Guan, Autophagy regulation by nutrient signaling. Cell Res, 2014. 24(1): p. 42–57. doi:https://doi.org/10.1038/cr.2013.166

    Article  CAS  Google Scholar 

  17. Jung, S., H. Jeong, and S.W. Yu, Autophagy as a decisive process for cell death. Exp Mol Med, 2020. 52(6): p. 921–930. doi:https://doi.org/10.1038/s12276-020-0455-4

    Article  CAS  Google Scholar 

  18. Wang, Y. and W.D. Le, Autophagy and Ubiquitin-Proteasome System. Adv Exp Med Biol, 2019. 1206: p. 527–550. doi:https://doi.org/10.1007/978-981-15-0602-4_25

    Article  CAS  Google Scholar 

  19. Li, M., et al., Autophagy in the HTR-8/SVneo Cell Oxidative Stress Model Is Associated with the NLRP1 Inflammasome. Oxid Med Cell Longev, 2021. 2021: p. 2353504. doi:https://doi.org/10.1155/2021/2353504

    Google Scholar 

  20. Ip, W.K.E., et al., Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science, 2017. 356(6337): p. 513–519. doi:https://doi.org/10.1126/science.aal3535

    Article  CAS  Google Scholar 

  21. Qiu, P., Y. Liu, and J. Zhang, Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis. Inflammation, 2019. 42(1): p. 6–19. doi:https://doi.org/10.1007/s10753-018-0890-8

    Article  CAS  Google Scholar 

  22. Wu, A.G., et al., Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Res Rev, 2021. 65: p. 101202. doi:https://doi.org/10.1016/j.arr.2020.101202

    Article  CAS  Google Scholar 

  23. Ma, K., et al., Toll-Like Receptor 2-Mediated Autophagy Promotes Microglial Cell Death by Modulating the Microglial M1/M2 Phenotype. Inflammation, 2020. 43(2): p. 701–711. doi:https://doi.org/10.1007/s10753-019-01152-5

    Article  CAS  Google Scholar 

  24. Gordon, R., et al., Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med, 2018. 10(465). doi:https://doi.org/10.1126/sdtranslmed.aah4066

  25. Ising, C., et al., NLRP3 inflammasome activation drives tau pathology. Nature, 2019. 575(7784): p. 669–673. doi:https://doi.org/10.1038/s41586-019-1769-z

    Article  CAS  Google Scholar 

  26. Han, H.E., et al., Activation of Autophagy Pathway Suppresses the Expression of iNOS, IL6 and Cell Death of LPS-Stimulated Microglia Cells. Biomol Ther (Seoul), 2013. 21(1): p. 21–8. doi:https://doi.org/10.4062/biomolther.2012.089

    Article  CAS  Google Scholar 

  27. Cho, M.H., et al., Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy, 2014. 10(10): p. 1761–75. doi:https://doi.org/10.4161/auto.29647

    Article  CAS  Google Scholar 

  28. Su, P., et al., The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience, 2016. 319: p. 155–67. doi:https://doi.org/10.1016/j.neuroscience.2016.01.035

    Article  CAS  Google Scholar 

  29. Reddy, P.H. and D.M. Oliver, Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer’s Disease. Cells, 2019. 8(5). doi:https://doi.org/10.3390/cells8050488

  30. Reddy, P.H., Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J Neurochem, 2006. 96(1): p. 1–13. doi:https://doi.org/10.1111/j.1471-4159.2005.03530.x

    Article  CAS  Google Scholar 

  31. Thellung, S., et al., Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death. Cell Death Dis, 2018. 9(2): p. 166. doi:https://doi.org/10.1038/s41419-017-0252-8

    Article  Google Scholar 

  32. Tsvetkov, A.S., et al., A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc Natl Acad Sci U S A, 2010. 107(39): p. 16982–7. doi:https://doi.org/10.1073/pnas.1004498107

    Article  CAS  Google Scholar 

  33. Kovács, T., et al., The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms. Sci Rep, 2017. 7: p. 42014. doi:https://doi.org/10.1038/srep42014

    Article  Google Scholar 

  34. Nilsson, P. and T.C. Saido, Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Aβ peptide. Bioessays, 2014. 36(6): p. 570–8. doi:https://doi.org/10.1002/bies.201400002

    Article  CAS  Google Scholar 

  35. Wani, A., et al., Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. Autophagy, 2021: p. 1–20. doi:https://doi.org/10.1080/15548627.2021.1872187

  36. Glatigny, M., et al., Autophagy Is Required for Memory Formation and Reverses Age-Related Memory Decline. Curr Biol, 2019. 29(3): p. 435–448.e8. doi:https://doi.org/10.1016/j.cub.2018.12.021

    Article  CAS  Google Scholar 

  37. Majumder, S., et al., Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One, 2011. 6(9): p. e25416. doi:https://doi.org/10.1371/journal.pone.0025416

    Article  CAS  Google Scholar 

  38. Spilman, P., et al., Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One, 2010. 5(4): p. e9979. doi:https://doi.org/10.1371/journal.pone.0009979

    Article  Google Scholar 

  39. Zhu, Z., et al., Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J Neurosci, 2013. 33(32): p. 13138–49. doi:https://doi.org/10.1523/jneurosci.4790-12.2013

    Article  CAS  Google Scholar 

  40. Lonskaya, I., et al., Diminished parkin solubility and co-localization with intraneuronal amyloid-β are associated with autophagic defects in Alzheimer’s disease. J Alzheimers Dis, 2013. 33(1): p. 231–47. doi:https://doi.org/10.3233/jad-2012-121141

    Article  CAS  Google Scholar 

  41. Cai, Q. and Y.Y. Jeong, Mitophagy in Alzheimer’s Disease and Other Age-Related Neurodegenerative Diseases. Cells, 2020. 9(1). doi:https://doi.org/10.3390/cells9010150

  42. Pradeepkiran, J.A., A.P. Reddy, and P.H. Reddy, Pharmacophore-based models for therapeutic drugs against phosphorylated tau in Alzheimer’s disease. Drug Discov Today, 2019. 24(2): p. 616–623. doi:https://doi.org/10.1016/j.drudis.2018.11.005

    Article  CAS  Google Scholar 

  43. Oliver, D. and P.H. Reddy, Dynamics of Dynamin-Related Protein 1 in Alzheimer’s Disease and Other Neurodegenerative Diseases. Cells, 2019. 8(9). doi:https://doi.org/10.3390/cells8090961

  44. Menzies, F.M., et al., Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron, 2017. 93(5): p. 1015–1034. doi:https://doi.org/10.1016/j.neuron.2017.01.022

    Article  CAS  Google Scholar 

  45. Kang, S., et al., Autophagy-Mediated Secretory Pathway is Responsible for Both Normal and Pathological Tau in Neurons. J Alzheimers Dis, 2019. 70(3): p. 667–680. doi:https://doi.org/10.3233/jad-190180

    Article  CAS  Google Scholar 

  46. Kandimalla, R., et al., Hippocampal phosphorylated tau induced cognitive decline, dendritic spine loss and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum Mol Genet, 2018. 27(1): p. 30–40. doi:https://doi.org/10.1093/hmg/ddx381

    Article  CAS  Google Scholar 

  47. Manczak, M. and P.H. Reddy, Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet, 2012. 21(11): p. 2538–47. doi:https://doi.org/10.1093/hmg/dds072

    Article  CAS  Google Scholar 

  48. Manczak, M. and P.H. Reddy, Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum Mol Genet, 2012. 21(23): p. 5131–46. doi:https://doi.org/10.1093/hmg/dds360

    Article  CAS  Google Scholar 

  49. Di Meco, A., et al., Autophagy Dysfunction in Alzheimer’s Disease: Mechanistic Insights and New Therapeutic Opportunities. Biol Psychiatry, 2020. 87(9): p. 797–807. doi:https://doi.org/10.1016/j.biopsych.2019.05.008

    Article  Google Scholar 

  50. Collier, J.J., et al., Developmental Consequences of Defective ATG7-Mediated Autophagy in Humans. N Engl J Med, 2021. 384(25): p. 2406–2417. doi:https://doi.org/10.1056/NEJMoa1915722

    Article  CAS  Google Scholar 

  51. Zhang, Z., et al., Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives. Ageing Res Rev, 2021. 72: p. 101464. doi:https://doi.org/10.1016/j.arr.2021.101464

    Article  CAS  Google Scholar 

  52. Estfanous, S., et al., Elevated Expression of MiR-17 in Microglia of Alzheimer’s Disease Patients Abrogates Autophagy-Mediated Amyloid-β Degradation. Front Immunol, 2021. 12: p. 705581. doi:https://doi.org/10.3389/fimmu.2021.705581

    Article  CAS  Google Scholar 

  53. Dixon, S.J., et al., Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012. 149(5): p. 1060–72. doi:https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  Google Scholar 

  54. Gao, M., et al., Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell, 2015. 59(2): p. 298–308. doi:https://doi.org/10.1016/j.molcel.2015.06.011

    Article  CAS  Google Scholar 

  55. Stockwell, B.R., et al., Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017. 171(2): p. 273–285. doi:https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  Google Scholar 

  56. Cao, J.Y. and S.J. Dixon, Mechanisms of ferroptosis. Cell Mol Life Sci, 2016. 73(11–12): p. 2195–209. doi:https://doi.org/10.1007/s00018-016-2194-1

    Article  CAS  Google Scholar 

  57. Fanzani, A. and M. Poli, Iron, Oxidative Damage and Ferroptosis in Rhabdomyosarcoma. Int J Mol Sci, 2017. 18(8). doi:https://doi.org/10.3390/ijms18081718

  58. Youssef, L.A., et al., Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood, 2018. 131(23): p. 2581–2593. doi:https://doi.org/10.1182/blood-2017-12-822619

    Article  CAS  Google Scholar 

  59. Yao, M.Y., et al., Role of ferroptosis in neurological diseases. Neurosci Lett, 2021. 747: p. 135614. doi:https://doi.org/10.1016/j.neulet.2020.135614

    Article  CAS  Google Scholar 

  60. Yang, W.S., et al., Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014. 156(1–2): p. 317–331. doi:https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  Google Scholar 

  61. Dixon, S.J. and B.R. Stockwell, The Hallmarks of Ferroptosis. Annual Review of Cancer Biology, 2019. 3(1): p. 35–54. doi:https://doi.org/10.1146/annurevcancerbio-030518-055844

    Article  Google Scholar 

  62. Luo, X., et al., Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ, 2021. 28(6): p. 1971–1989. doi:https://doi.org/10.1038/s41418-020-00719-2

    Article  CAS  Google Scholar 

  63. Seibt, T.M., B. Proneth, and M. Conrad, Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med, 2019. 133: p. 144–152. doi:https://doi.org/10.1016/j.freeradbiomed.2018.09.014

    Article  CAS  Google Scholar 

  64. Kagan, V.E., et al., Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol, 2017. 13(1): p. 81–90. doi:https://doi.org/10.1038/nchembio.2238

    Article  CAS  Google Scholar 

  65. Dar, H.H., et al., A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO(») sabotage of theftferroptosis. Redox Biol, 2021. 45: p. 102045. doi:https://doi.org/10.1016/j.redox.2021.102045

    Article  CAS  Google Scholar 

  66. Weiland, A., et al., Ferroptosis and Its Role in Diverse Brain Diseases. Mol Neurobiol, 2019. 56(7): p. 4880–4893. doi:https://doi.org/10.1007/s12035-018-1403-3

    Article  CAS  Google Scholar 

  67. Wu, J.R., Q.Z. Tuo, and P. Lei, Ferroptosis, a Recent Defined Form of Critical Cell Death in Neurological Disorders. J Mol Neurosci, 2018. 66(2): p. 197–206. doi:https://doi.org/10.1007/s12031-018-1155-6

    Article  CAS  Google Scholar 

  68. McIntosh, A., et al., Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol, 2019. 29(5): p. 606–621. doi:https://doi.org/10.1111/bpa.12704

    Article  CAS  Google Scholar 

  69. Ayton, S., et al., Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatry, 2020. 25(11): p. 2932–2941. doi:https://doi.org/10.1038/s41380-019-0375-7

    Article  CAS  Google Scholar 

  70. Ghadery, C., et al., R2* mapping for brain iron: associations with cognition in normal aging. Neurobiol Aging, 2015. 36(2): p. 925–32. doi:https://doi.org/10.1016/j.neurobiolaging.2014.09.013

    Article  CAS  Google Scholar 

  71. Acosta-Cabronero, J., et al., In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan. J Neurosci, 2016. 36(2): p. 364–74. doi:https://doi.org/10.1523/jneurosci.1907-15.2016

    Article  CAS  Google Scholar 

  72. Smith, M.A., et al., Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis, 2010. 19(1): p. 363–72. doi:https://doi.org/10.3233/jad-2010-1239

    Article  Google Scholar 

  73. Ayton, S., N.G. Faux, and A.I. Bush, Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun, 2015. 6: p. 6760. doi:https://doi.org/10.1038/ncomms7760

    Article  CAS  Google Scholar 

  74. Kroner, A., et al., TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron, 2014. 83(5): p. 1098–116. doi:https://doi.org/10.1016/j.neuron.2014.07.027

    Article  CAS  Google Scholar 

  75. van Duijn, S., et al., Cortical Iron Reflects Severity of Alzheimer’s Disease. J Alzheimers Dis, 2017. 60(4): p. 1533–1545. doi:https://doi.org/10.3233/jad-161143

    Article  CAS  Google Scholar 

  76. Ayton, S., et al., Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline. Brain, 2017. 140(8): p. 2112–2119. doi:https://doi.org/10.1093/brain/awx137

    Article  Google Scholar 

  77. van Bergen, J.M.G., et al., Simultaneous quantitative susceptibility mapping and Flutemetamol-PET suggests local correlation of iron and β-amyloid as an indicator of cognitive performance at high age. Neuroimage, 2018. 174: p. 308–316. doi:https://doi.org/10.1016/j.neuroimage.2018.03.021

    Article  CAS  Google Scholar 

  78. Yan, H.F., et al., Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther, 2021. 6(1): p. 49. doi:https://doi.org/10.1038/s41392-020-00428-9

    Article  CAS  Google Scholar 

  79. Fu, A.L., Z.H. Dong, and M.J. Sun, Protective effect of N-acetyl-L-cysteine on amyloid beta-peptide-induced learning and memory deficits in mice. Brain Res, 2006. 1109(1): p. 201–6. doi:https://doi.org/10.1016/j.brainres.2006.06.042

    Article  CAS  Google Scholar 

  80. Bao, W.D., et al., Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ, 2021. 28(5): p. 1548–1562. doi:https://doi.org/10.1038/s41418-020-00685-9

    Article  CAS  Google Scholar 

  81. Reichert, C.O., et al., Ferroptosis Mechanisms Involved in Neurodegenerative Diseases. Int J Mol Sci, 2020. 21(22). doi:https://doi.org/10.3390/ijms21228765

  82. Smith, M.A., et al., Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A, 1997. 94(18): p. 9866–8. doi:https://doi.org/10.1073/pnas.94.18.9866

    Article  CAS  Google Scholar 

  83. Svobodová, H., et al., Elevated age-related cortical iron, ferritin and amyloid plaques in APP(swe)/PS1(deltaE9) transgenic mouse model of Alzheimer’s disease. Physiol Res, 2019. 68(Suppl 4): p. S445–S451. doi:https://doi.org/10.33549/physiolres.934383

    Article  Google Scholar 

  84. Nikseresht, S., A.I. Bush, and S. Ayton, Treating Alzheimer’s disease by targeting iron. Br J Pharmacol, 2019. 176(18): p. 3622–3635. doi:https://doi.org/10.1111/bph.14567

    Article  CAS  Google Scholar 

  85. Wong, B.X., et al., β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One, 2014. 9(12): p. e114174. doi:https://doi.org/10.1371/journal.pone.0114174

    Article  Google Scholar 

  86. Tuo, Q.Z., et al., Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry, 2017. 22(11): p. 1520–1530. doi:https://doi.org/10.1038/mp.2017.171

    Article  CAS  Google Scholar 

  87. Long, H.Z., et al., The Role of Microglia in Alzheimer’s Disease From the Perspective of Immune Inflammation and Iron Metabolism. Front Aging Neurosci, 2022. 14: p. 888989. doi:https://doi.org/10.3389/fnagi.2022.888989

    Article  CAS  Google Scholar 

  88. Fernández-Mendívil, C., et al., Aging and Progression of Beta-Amyloid Pathology in Alzheimer’s Disease Correlates with Microglial Heme-Oxygenase-1 Overexpression. Antioxidants (Basel), 2020. 9(7). doi:https://doi.org/10.3390/antiox9070644

  89. Chang, Y., et al., NLRP3 inflammasome-mediated microglial pyroptosis is critically involved in the development of post-cardiac arrest brain injury. J Neuroinflammation, 2020. 17(1): p. 219. doi:https://doi.org/10.1186/s12974-020-01879-1

    Article  CAS  Google Scholar 

  90. Man, S.M., R. Karki, and T.D. Kanneganti, Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev, 2017. 277(1): p. 61–75. doi:https://doi.org/10.1111/imr.12534

    Article  CAS  Google Scholar 

  91. Jorgensen, I. and E.A. Miao, Pyroptotic cell death defends against intracellular pathogens. Immunol Rev, 2015. 265(1): p. 130–42. doi:https://doi.org/10.1111/imr.12287

    Article  CAS  Google Scholar 

  92. Shi, J., W. Gao, and F. Shao, Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci, 2017. 42(4): p. 245–254. doi:https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  Google Scholar 

  93. Zeng, C.Y., et al., ATP induces caspase-3/gasdermin E-mediated pyroptosis in NLRP3 pathway-blocked murine macrophages. Apoptosis, 2019. 24(9–10): p. 703–717. doi:https://doi.org/10.1007/s10495-019-01551-x

    Article  CAS  Google Scholar 

  94. Bergsbaken, T., S.L. Fink, and B.T. Cookson, Pyroptosis: host cell death and inflammation. Nat Rev Microbiol, 2009. 7(2): p. 99–109. doi:https://doi.org/10.1038/nrmicro2070

    Article  CAS  Google Scholar 

  95. Ding, H.G., et al., Hypercapnia promotes microglial pyroptosis via inhibiting mitophagy in hypoxemic adult rats. CNS Neurosci Ther, 2020. 26(11): p. 1134–1146. doi:https://doi.org/10.1111/cns.13435

    Article  CAS  Google Scholar 

  96. Poh, L., et al., Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun, 2019. 75: p. 34–47. doi:https://doi.org/10.1016/j.bbi.2018.09.001

    Article  CAS  Google Scholar 

  97. Tan, M.S., et al., Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis, 2014. 5(8): p. e1382. doi:https://doi.org/10.1038/cddis.2014.348

    Article  CAS  Google Scholar 

  98. Ross, J., et al., A selective, non-peptide caspase-1 inhibitor, VRT-018858, markedly reduces brain damage induced by transient ischemia in the rat. Neuropharmacology, 2007. 53(5): p. 638–42. doi:https://doi.org/10.1016/j.neuropharm.2007.07.015

    Article  CAS  Google Scholar 

  99. Heneka, M.T., et al., NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013. 493(7434): p. 674–8. doi:https://doi.org/10.1038/nature11729

    Article  CAS  Google Scholar 

  100. Halle, A., et al., The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol, 2008. 9(8): p. 857–65. doi:https://doi.org/10.1038/ni.1636

    Article  CAS  Google Scholar 

  101. Hook, V.Y., M. Kindy, and G. Hook, Inhibitors of cathepsin B improve memory and reduce beta-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein. J Biol Chem, 2008. 283(12): p. 7745–53. doi:https://doi.org/10.1074/jbc.M708362200

    Article  CAS  Google Scholar 

  102. Chen, H., et al., Cadmium induces NLRP3 inflammasome-dependent pyroptosis in vascular endothelial cells. Toxicol Lett, 2016. 246: p. 7–16. doi:https://doi.org/10.1016/j.toxlet.2016.01.014

    Article  CAS  Google Scholar 

  103. Shen, H., et al., Pyroptosis executive protein GSDMD as a biomarker for diagnosis and identification of Alzheimer’s disease. Brain Behav, 2021. 11(4): p. e02063. doi:https://doi.org/10.1002/brb3.2063

    Article  CAS  Google Scholar 

  104. Griffin, W.S., et al., Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation, 2006. 3: p. 5. doi:https://doi.org/10.1186/1742-2094-3-5

    Article  Google Scholar 

  105. Biundo, F., et al., A role for tau in learning, memory and synaptic plasticity. Sci Rep, 2018. 8(1): p. 3184. doi:https://doi.org/10.1038/s41598-018-21596-3

    Article  Google Scholar 

  106. Wagner, L.K., et al., Immunoproteasome deficiency alters microglial cytokine response and improves cognitive deficits in Alzheimer’s disease-like APPPS1 mice. Acta Neuropathol Commun, 2017. 5(1): p. 52. doi:https://doi.org/10.1186/s40478-017-0453-5

    Article  Google Scholar 

  107. Sita, G., et al., NLRP3 and Infections: β-Amyloid in Inflammasome beyond Neurodegeneration. Int J Mol Sci, 2021. 22(13). doi:https://doi.org/10.3390/ijms22136984

  108. Litwiniuk, A., et al., Contribution of Mitochondrial Dysfunction Combined with NLRP3 Inflammasome Activation in Selected Neurodegenerative Diseases. Pharmaceuticals (Basel), 2021. 14(12). doi:https://doi.org/10.3390/ph14121221

  109. Sharma, D. and T.D. Kanneganti, The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol, 2016. 213(6): p. 617–29. doi:https://doi.org/10.1083/jcb.201602089

    Article  CAS  Google Scholar 

  110. Sharma, B., et al., Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer’s Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation, 2022: p. 1–32. doi:https://doi.org/10.1007/s10753-022-01730-0

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [82001473].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Miao.

Ethics declarations

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Zhongshan Hospital of Fudan university.

Additional information

Conflict of interest

All authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Zhang, H., Xia, M. et al. Programmed Death of Microglia in Alzheimer’s Disease: Autophagy, Ferroptosis, and Pyroptosis. J Prev Alzheimers Dis 10, 95–103 (2023). https://doi.org/10.14283/jpad.2023.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2023.3

Key words

Navigation