Skip to main content
Log in

Cross-Sectional Associations of Sarcopenia and Its Components with Neuropsychological Performance among Memory Clinic Patients with Mild Cognitive Impairment and Alzheimer’s Disease

  • Original Research
  • Published:
The Journal of Frailty & Aging Aims and scope Submit manuscript

Abstract

Background

The association of sarcopenia with cognitive function in its specific domains remains poorly understood.

Objectives

To investigate the association of sarcopenia and its components with neuropsychological performance among patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD).

Design

Cross-sectional design.

Setting

A memory clinic in Japan.

Participants

The study included 497 MCI/684 AD patients aged 65–89 years.

Measurements

Patients were assessed for muscle mass by bioelectrical impedance analysis, muscle strength by hand grip strength (HGS), and physical performance by timed up and go test (TUG). Sarcopenia was defined as presence of both low muscle strength and low muscle mass. The patients underwent neuropsychological tests, including logical memory, frontal lobe assessment battery, word fluency test, Raven’s colored progressive matrices, digit span, and the Alzheimer’s disease assessment scale-cognitive subscale (ADAS-cog). Results: The prevalence of sarcopenia in men and women was 24.1% and 19.5%, respectively. In multiple regression analyses adjusting for confounders, unlike in men, sarcopenia was associated with memory function in women (ADAS-cog, memory domain, coefficient = 1.08, standard error (SE) = 0.36), which was thought likely due to the relationship between HGS and memory function (immediate recall of logical memory, coefficient = 0.07, SE = 0.03; ADAS-cog, memory domain, coefficient = −0.10, SE = 0.03). Of the components of sarcopenia in both sexes, HGS and TUG were associated with visuospatial function and frontal lobe function, respectively.

Conclusions

The specific association of sarcopenia and its components with cognitive domains may provide the key to elucidating the muscle-brain interactions in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Morley JE. The New Geriatric Giants. Clin Geriatr Med. 2017;33(3):xi–xii. doi: https://doi.org/10.1016/j.cger.2017.05.001.

    Article  PubMed  Google Scholar 

  2. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: https://doi.org/10.1093/ageing/afy169.

    Article  PubMed  Google Scholar 

  3. Peng TC, Chen WL, Wu LW, Chang YW, Kao TW. Sarcopenia and cognitive impairment: A systematic review and meta-analysis. Clin Nutr. 2020;39(9):2695–701. doi: https://doi.org/10.1016/j.clnu.2019.12.014.

    Article  PubMed  Google Scholar 

  4. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement 2021; 17: 327–406. doi: https://doi.org/10.1002/alz.12328.

    Article  CAS  Google Scholar 

  5. Sugimoto T, Ono R, Murata S, et al. Prevalence and associated factors of sarcopenia in elderly subjects with amnestic mild cognitive impairment or Alzheimer disease. Curr Alzheimer Res. 2016;13(6):718–26. doi: https://doi.org/10.2174/156720501366616021112482.

    Article  CAS  PubMed  Google Scholar 

  6. Ogawa Y, Kaneko Y, Sato T, Shimizu S, Kanetaka H, Hanyu H. Sarcopenia and Muscle Functions at Various Stages of Alzheimer Disease. Front Neurol. 2018;9:710. doi: https://doi.org/10.3389/fneur.2018.00710.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fujisawa C, Umegaki H, Okamoto K, et al. Physical Function Differences Between the Stages From Normal Cognition to Moderate Alzheimer Disease. J Am Med Dir Assoc. 2017;18(4):368 e9–e15. doi: https://doi.org/10.1016/j.jamda.2016.12.0.

    Article  PubMed  Google Scholar 

  8. Murata S, Ono R, Sugimoto T, Toba K, Sakurai T. Functional Decline and Body Composition Change in Older Adults With Alzheimer Disease: A Retrospective Cohort Study at a Japanese Memory Clinic. Alzheimer Dis Assoc Disord. 2021;35(1):36–43. doi: https://doi.org/10.1097/WAD.0000000000000426.

    Article  PubMed  Google Scholar 

  9. Sui SX, Williams LJ, Holloway-Kew KL, Hyde NK, Pasco JA. Skeletal Muscle Health and Cognitive Function: A Narrative Review. Int J Mol Sci. 2020;22(1). doi: https://doi.org/10.3390/ijms22010255.

  10. Szlejf C, Suemoto CK, Lotufo PA, Bensenor IM. Association of Sarcopenia With Performance on Multiple Cognitive Domains: Results From the ELSA-Brasil Study. J Gerontol A Biol Sci Med Sci. 2019;74(11):1805–11. doi: https://doi.org/10.1093/gerona/glz118.

    Article  PubMed  Google Scholar 

  11. Huang CY, Hwang AC, Liu LK, et al. Association of Dynapenia, Sarcopenia, and Cognitive Impairment Among Community-Dwelling Older Taiwanese. Rejuvenation Res. 2016;19(1):71–8. doi: https://doi.org/10.1089/rej.2015.1710.

    Article  PubMed  Google Scholar 

  12. Kim M, Won CW. Sarcopenia Is Associated with Cognitive Impairment Mainly Due to Slow Gait Speed: Results from the Korean Frailty and Aging Cohort Study (KFACS). Int J Environ Res Public Health. 2019;16(9). doi: https://doi.org/10.3390/ijerph16091491.

  13. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9. doi: https://doi.org/10.1016/j.jalz.2011.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  14. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9. doi: https://doi.org/10.1016/j.jalz.2011.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Folstein MF, Folstein SE, McHugh PR. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. doi: https://doi.org/10.1016/0022-3956(75)90026-6.

    Article  CAS  PubMed  Google Scholar 

  16. Matsui Y, Fujita R, Harada A, et al. Association of grip strength and related indices with independence of activities of daily living in older adults, investigated by a newly-developed grip strength measuring device. Geriatr Gerontol Int. 2014;14 Suppl 2:77–86. doi: https://doi.org/10.1111/ggi.12262.

    Article  PubMed  Google Scholar 

  17. Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21(3):300–7.e2. doi: https://doi.org/10.1016/j.jamda.2019.12.012.

    Article  PubMed  Google Scholar 

  18. Wechsler D. Wechsler Memory Scale-Revised. San Antonio: The Psychological Corporation, 1987.

    Google Scholar 

  19. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55(11):1621–6. doi: https://doi.org/10.1212/wnl.55.11.1621.

    Article  CAS  PubMed  Google Scholar 

  20. Kato S. Development of the revised version of Hasegawa’s Dementia Scale (HDS-R). Jpn Geriatr Psychiatr Med. 1991;2:1339–47.

    Google Scholar 

  21. Raven JC. Manual for Raven’s progressive matrices and vocabulary scales. Standard Progressive Matrices 1983.

  22. Wechsler D. Wechsler Adult Intelligence Scale—Third Edition. San Antonio: The Psychological Corporation, 1997.

    Google Scholar 

  23. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64. doi: https://doi.org/10.1176/ajp.141.11.1356.

    Article  CAS  PubMed  Google Scholar 

  24. Mahoney FI, Barthel DW. FUNCTIONAL EVALUATION: THE BARTHEL INDEX. Md State Med J. 1965;14:61–5.

    CAS  PubMed  Google Scholar 

  25. Yesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49. doi: https://doi.org/10.1016/0022-3956(82)90033-4.

    Article  PubMed  Google Scholar 

  26. Carson RG. Get a grip: individual variations in grip strength are a marker of brain health. Neurobiol Aging. 2018;71:189–222. doi: https://doi.org/10.1016/j.neurobiolaging.2018.07.023.

    Article  PubMed  Google Scholar 

  27. Moon Y, Moon WJ, Kim JO, Kwon KJ, Han SH. Muscle Strength Is Independently Related to Brain Atrophy in Patients with Alzheimer’s Disease. Dement Geriatr Cogn Disord. 2019;47(4–6):306–14. doi: https://doi.org/10.1159/000500718.

    Article  PubMed  Google Scholar 

  28. Kilgour AH, Todd OM, Starr JM. A systematic review of the evidence that brain structure is related to muscle structure and their relationship to brain and muscle function in humans over the lifecourse. BMC Geriatr. 2014;14:85. doi: https://doi.org/10.1186/1471-2318-14-85.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chang KV, Hsu TH, Wu WT, Huang KC, Han DS. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc. 2016;17(12):1164 e7–e15. doi: https://doi.org/10.1016/j.jamda.2016.09.013.

    Article  PubMed  Google Scholar 

  30. Oveisgharan S, Arvanitakis Z, Yu L, Farfel J, Schneider JA, Bennett DA. Sex differences in Alzheimer’s disease and common neuropathologies of aging. Acta Neuropathol. 2018;136(6):887–900. doi: https://doi.org/10.1007/s00401-018-1920-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buchman AS, Schneider JA, Leurgans S, Bennett DA. Physical frailty in older persons is associated with Alzheimer disease pathology. Neurology. 2008;71(7):499–504. doi: https://doi.org/10.1212/01.wnl.0000324864.81179.6a.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Buchman AS, Yu L, Wilson RS, Schneider JA, Bennett DA. Association of brain pathology with the progression of frailty in older adults. Neurology. 2013;80(22):2055–61. doi: https://doi.org/10.1212/WNL.0b013e318294b462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008;23(3):329–42; quiz 472. doi: https://doi.org/10.1002/mds.21720.

    Article  PubMed  Google Scholar 

  34. Cohen JA, Verghese J, Zwerling JL. Cognition and gait in older people. Maturitas. 2016;93:73–7. doi: https://doi.org/10.1016/j.maturitas.2016.05.005.

    Article  PubMed  Google Scholar 

  35. Saji N, Ogama N, Toba K, Sakurai T. White matter hyperintensities and geriatric syndrome: An important role of arterial stiffness. Geriatr Gerontol Int. 2015;15:17–25. doi: https://doi.org/10.1111/ggi.12673.

    Article  PubMed  Google Scholar 

  36. Bolandzadeh N, Liu-Ambrose T, Aizenstein H, et al. Pathways linking regional hyperintensities in the brain and slower gait. Neuroimage. 2014;99:7–13. doi: https://doi.org/10.1016/j.neuroimage.2014.05.017.

    Article  PubMed  Google Scholar 

  37. He L, de Souto Barreto P, Giudici KV, et al. Cross-Sectional and Longitudinal Associations Between Plasma Neurodegenerative Biomarkers and Physical Performance Among Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci. 2021;76(10):1874–1881. doi: https://doi.org/10.1093/gerona/glaa284.

    Article  PubMed  Google Scholar 

  38. Salimi S, Irish M, Foxe D, Hodges JR, Piguet O, Burrell JR. Can visuospatial measures improve the diagnosis of Alzheimer’s disease? Alzheimers Dement (Amst). 2018;10:66–74. doi: https://doi.org/10.1016/j.dadm.2017.10.004.

    Article  Google Scholar 

  39. Yoshida T, Mori T, Shimizu H, et al. Neural basis of visual perception and reasoning ability in Alzheimer’s disease: correlation between Raven’s Colored Progressive Matrices test and (123) I-IMP SPECT imaging results. Int J Geriatr Psychiatry. 2017;32(4):407–13. doi: https://doi.org/10.1002/gps.4481.

    Article  PubMed  Google Scholar 

  40. Hsu YH, Liang CK, Chou MY, et al. Sarcopenia is independently associated with parietal atrophy in older adults. Exp Gerontol. 2021;151:111402. doi: https://doi.org/10.1016/j.exger.2021.111402.

    Article  PubMed  Google Scholar 

  41. Hooghiemstra AM, Ramakers I, Sistermans N, et al. Gait Speed and Grip Strength Reflect Cognitive Impairment and Are Modestly Related to Incident Cognitive Decline in Memory Clinic Patients With Subjective Cognitive Decline and Mild Cognitive Impairment: Findings From the 4C Study. J Gerontol A Biol Sci Med Sci. 2017;72(6):846–54. doi: https://doi.org/10.1093/gerona/glx003.

    Article  PubMed  Google Scholar 

  42. Chen LK, Arai H. Physio-cognitive decline as the accelerated aging phenotype. Arch Gerontol Geriatr. 2020;88:104051.

    Article  PubMed  Google Scholar 

  43. Liu LK, Guo CY, Lee WJ, et al. Subtypes of physical frailty: Latent class analysis and associations with clinical characteristics and outcomes. Sci Rep. 2017;7:46417. doi: https://doi.org/10.1016/j.archger.2020.104051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang CY, Hwang AC, Liu LK, et al. Association of Dynapenia, Sarcopenia, and Cognitive Impairment Among Community-Dwelling Older Taiwanese. Rejuvenation Res. 2016;19(1):71–78. doi: https://doi.org/10.1089/rej.2015.1710.

    Article  PubMed  Google Scholar 

  45. Nishita Y, Nakamura A, Kato T, et al. Links Between Physical Frailty and Regional Gray Matter Volumes in Older Adults: A Voxel-Based Morphometry Study. J Am Med Dir Assoc. 2019;20(12):1587–1592.e7. doi: https://doi.org/10.1016/j.jamda.2019.09.001.

    Article  PubMed  Google Scholar 

  46. Chen WT, Chou KH, Liu LK, et al. Reduced cerebellar gray matter is a neural signature of physical frailty. Hum Brain Mapp. 2015;36(9):3666–3676. doi: https://doi.org/10.1002/hbm.22870.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu LK, Chou KH, Hsu CCH, et al. Cerebellar-limbic neurocircuit is the novel biosignature of physio-cognitive decline syndrome. Aging (Albany NY). 2020;12(24):25319–25336. doi: https://doi.org/10.18632/aging.104135.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the BioBank at the National Center for Geriatrics and Gerontology for the quality control of the clinical data.

Funding

Funding: This work was supported by funds from the Research Funding for Longevity Sciences (grant number 21–28) from the National Center for Geriatrics and Gerontology. The funders had no role in study design, methods, data collection/analysis, and preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: T.Su. designed the analysis and study design, organized data, and wrote the manuscript. T.Sa. designed the analysis and study design, contributed statistical support, and reviewed/edited the manuscript. Y.Ku., N.M., K.U., S.N. reviewed/edited the manuscript and contributed to the discussion. Y.Ki., N.S., T.Sa. ascertained patients and follow them, collected data, reviewed/edited the manuscript, and contributed to the discussion. T.Su. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Taiki Sugimoto.

Ethics declarations

Conflict of Interest: None.

Ethical standards: The local Ethics Committee of the National Center for Geriatrics and Gerontology approved the study (approval number: No.1400).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, T., Kuroda, Y., Matsumoto, N. et al. Cross-Sectional Associations of Sarcopenia and Its Components with Neuropsychological Performance among Memory Clinic Patients with Mild Cognitive Impairment and Alzheimer’s Disease. J Frailty Aging 11, 182–189 (2022). https://doi.org/10.14283/jfa.2022.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jfa.2022.3

Key words

Navigation