Skip to main content
Log in

Maximum entropy principle and hydrodynamic models in statistical mechanics

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

This review presents the state of the art of the maximum entropy principle (MEP) in its classical and quantum (QMEP) formulation. Within the classical MEP we overview a general theory able to provide, in a dynamical context, the macroscopic relevant variables for carrier transport in the presence of electric fields of arbitrary strength. For the macroscopic variables the linearized maximum entropy approach is developed including full-band effects within a total energy scheme. Under spatially homogeneous conditions, we construct a closed set of hydrodynamic equations for the small-signal (dynamic) response of the macroscopic variables. The coupling between the driving field and the energy dissipation is analyzed quantitatively by using an arbitrary number of moments of the distribution function. Analogously, the theoretical approach is applied to many one-dimensional n+nn+ submicron Si structures by using different band structure models, different doping profiles, different applied biases and is validated by comparing numerical calculations with ensemble Monte Carlo simulations and with available experimental data. Within the quantum MEP we introduce a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is then asserted as fundamental principle of quantum statistical mechanics. Accordingly, we have developed a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theory is formulated both in thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of ħ2, being ħ the reduced Planck constant. In particular, by using an arbitrary number of moments, we prove that: i) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives both of the numerical density n and of the effective temperature T; ii) the results available from literature in the framework both of a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as particular cases; iii) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; iv) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; v) the quantum maximum entropy principle keeps full validity in the classical limit, when ħ 0. Future perspectives of the MEP, are briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wehrl A., Rev. Mod. Phys., 50 (1978) 221.

    Article  ADS  MathSciNet  Google Scholar 

  2. Jaynes E. T., Phys. Rev., 108 (1957) 620; 108 (1957) 171.

    Article  ADS  Google Scholar 

  3. Kullback S., Leibler R. A., Ann. Math. Stat., 22 (1951) 79.

    Article  Google Scholar 

  4. Kolmogorov A. N., Dokl. Russ. Acad. Sci., 124 (1959) 754; Sinai ya. G., Dokl. Russ. Acad. Sci., 124 (1959) 768.

    Google Scholar 

  5. Segal I. E., J. Math. Mech., 9 (1960) 623.

    MathSciNet  Google Scholar 

  6. Hartley R., Transmission of information, The Bell System Technical Journal, 7 (1928) 535.

    Article  Google Scholar 

  7. Tsallis C., J. Stat. Phys., 52 (1988) 479.

    Article  ADS  Google Scholar 

  8. Kaniadiakis G., Phys. Rev. E, 66 (2002) 056125; 72 (2005) 036108.

    Article  ADS  MathSciNet  Google Scholar 

  9. Tempesta P., Groups entropies, correlation laws and zeta functions, arXiv:1105.1935v1 [cond-mat.stat-mech] (2011).

  10. Shore J. and Johnson R., IEEE Trans., 26 (1980) 26.

    Google Scholar 

  11. Trovato M. and Reggiani L., J. Phys. A: Math. Theor., 43 (2010) 102001.

    Article  ADS  Google Scholar 

  12. Trovato M. and Reggiani L., Phys. Rev. E, 81 (2010) 021119-1.

    Article  ADS  Google Scholar 

  13. I-Shih Liu and Müller I., Arch. Rational Mech. Anal., 46 (1972) 149; I-Shih Liu and Müller I., Arch. Rational Mech. Anal., 83 (1983) 285.

    Article  ADS  MathSciNet  Google Scholar 

  14. Kremer G. M., Ann. Inst. Henri Poincaré, 45 (1986) 419.

    Google Scholar 

  15. Ruggeri T., Muracchini A. and Seccia L., Phys. Rev. Lett., 64 (1990) 2640.

    Article  ADS  Google Scholar 

  16. Reinecke S. and Kremer G. M., Phys. Rev. A, 42 (1990) 815; Reinecke S. and Kremer G. M., Continuum Mech. Thermodyn., 3 (1991) 155.

    Article  ADS  Google Scholar 

  17. Woolard D. L., Tian H., Trew R. J., Littlejohn M. A. and Kim W., Phys. Rev. B, 44 (1991) 11119.

    Article  ADS  Google Scholar 

  18. Mongioví M. S., Phys. Rev. B, 48 (1993) 6276; Jou D., Mongiovi M. S. and Sciacca M., Phys. Lett. A, 368 (2007) 7; Mongioví M. S. and Jou D., Phys. Rev. B, 75 (2007) 024507.

    Article  ADS  Google Scholar 

  19. Gruzhinskis V., Starikov E., Shiktorov P., Reggiani L., Saranniti M. and Varani L., Semicond. Sci. Technol., 7 (1993) 1283.

    Article  ADS  Google Scholar 

  20. Gruzhinskis V., Starikov E. and Shiktorov P., Solid-State Electron., 36 (1993) 1055; Gruzhinskis V., Starikov E. and Shiktorov P., Solid-State Electron., 36 (1993) 1067.

    Article  ADS  Google Scholar 

  21. Stettler M. A., Alam M. A. and Lundstrom M. S., IEEE Trans. Electron Devices, 40 (1993) 733; Leone A, Gnudi A and Baccarani G., IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 13 (1994) 231; Ravaioli U., Semicond. Sci. Technol., 13 (1998) 1.

    Article  ADS  Google Scholar 

  22. Weiss W., Phys. Rev. E, 52 (1995) R5760.

    Article  ADS  Google Scholar 

  23. Anile A. M. and Pennisi S., Phys. Rev. B, 46 (1992) 13186; Anile A. M. and Muscato O., Phys. Rev. B, 51 (1995) 16728.

    Article  ADS  Google Scholar 

  24. Rudan M., Vecchi M. and Ventura D., Mathematical problems in semiconductor physics, edited by Marcati P., Markowich P. and Natalini R., Pitman Res. Notes Math. Ser., Vol. 186 (Longman) 1995.

  25. Pennisi S. and Trovato M., Continuum Mech. Thermodyn., 7 (1995) 489.

    Article  ADS  MathSciNet  Google Scholar 

  26. I-Shih Liu, Müller I. and Ruggeri T., Ann. Phys. (N.Y.), 169 (1986) 191; Struchtrup H., Ann. Phys. (N.Y.), 257 (1997) 111; Struchtrup H., Ann. Phys. (N. Y.), 266 (1998) 1; Struchtrup H., Physica A, 253 (1998) 555; Mascali G. V. and Romano V., Ann. Inst. Henri Poincaré, 67 (1997) 123; Kremer G. M., Continuum Mech. Thermodyn., 9 (1997) 13.

    Article  ADS  Google Scholar 

  27. Anile A. M. and Trovato M., Phys. Lett. A, 230 (1997) 387.

    Article  ADS  Google Scholar 

  28. Trovato M. and Falsaperla P., Phys. Rev. B, 57 (1998) 4456; Erratum: Phys. Rev. B, 57 (1998) 12617.

    Article  ADS  Google Scholar 

  29. Müller I. and Ruggeri T., Rational Extended Thermodynamics, Springer Tracts Nat. Philos., Vol. 37 (Springer-Verlag, New York) 1998.

    Book  Google Scholar 

  30. Cercignani C., The Boltzmann equation and its applications, Applied Mathematical Sciences, Vol. 67 (Springer-Verlag, New York) 1998.

    Google Scholar 

  31. Trovato M. and Reggiani L., J. Appl. Phys., 85 (1999) 4050.

    Article  ADS  Google Scholar 

  32. Trovato M., Falsaperla P. and Reggiani L., J. Appl. Phys., 86 (1999) 5906.

    Article  ADS  Google Scholar 

  33. Anile A. M. and Romano V., Cont. Mechan. Thermodyn., 11 (1999) 307. Romano V., Cont. Mechan. Thermodyn., 12 (2000) 31.

    Article  ADS  Google Scholar 

  34. Struchtrup H., Physica A, 275 (2000) 229; Liotta S. F. and Struchtrup H., Solid-State Electron., 44 (2000) 95.

    Article  ADS  Google Scholar 

  35. Trovato M. and Reggiani L., Phys. Rev. B, 61 (2000) 16667.

    Article  ADS  Google Scholar 

  36. Cercignani C. and Kremer G. M., The relativistic Boltzmann equation: theory and applications (Birkhäuser Verlag) 2002.

  37. Mascali G. and Trovato M., Physica A, 310 (2002) 121.

    Article  ADS  Google Scholar 

  38. Müller I., Reitebuch D. and Weiss W., Continuum Mech. Thermodyn., 15 (2002) 113.

    Article  ADS  Google Scholar 

  39. Ruggeri T. and Trovato M., Continuum Mech. Thermodyn., 16 (2004) 551.

    Article  ADS  MathSciNet  Google Scholar 

  40. Struchtrup H. and Torrilhon M., Phys. Rev. Lett., 99 (2007) 014502; Taheri P. and Struchtrup H., Phys. Fluids, 22 (2010) 112004.

    Article  ADS  Google Scholar 

  41. Trovato M. and Reggiani L., Phys. Rev. B, 73 (2006) 245209.

    Article  ADS  Google Scholar 

  42. Trovato M. and Falsaperla P., Continuum Mech. Thermodyn., 19 (2008) 511.

    Article  ADS  MathSciNet  Google Scholar 

  43. Gouin H. and Ruggeri T., Phys. Rev. E, 78 (2008) 016303; Ruggeri T. and Simic S., Phys. Rev. E, 80 (2009) 026317.

    Article  ADS  Google Scholar 

  44. Jou D., Casas-Vazquez J. and Lebon G., Extended Irreversible Thermodynamics (Springer-Verlag, New York) 2010.

    Book  MATH  Google Scholar 

  45. Taniguchi S., Mentrelli A., Zhao N., Ruggeri T. and Sugiyama M., Phys. Rev. E, 81 (2010) 066307; Taniguchi S., Mentrelli A., Ruggeri T., Sugiyama M. and Zhao N., Phys. Rev. E, 82 (2010) 036324.

    Article  ADS  Google Scholar 

  46. Chapman S. and Cowling T. G., Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, U.K.) 1970.

    MATH  Google Scholar 

  47. Jaynes E. T., Statistical Physics, edited by Ford W. K. (Benjamin, New York) 1963.

    MATH  Google Scholar 

  48. Grandy W. T., Phys. Rep., 62 (1980) 175; Schlogl F., Phys. Rep., 62 (1980) 267.

    Article  ADS  MathSciNet  Google Scholar 

  49. Jaynes E. T., Papers on Probability, Statistics, and statistical Physics, edited by Rosenkrantz R. D. (Reidel, Dordrecht, Holland) 1983.

  50. Mead L. R. and Papanicolaou N., J. Math. Phys., 25 (1984) 2404.

    Article  ADS  MathSciNet  Google Scholar 

  51. Carlsson A. E. and Fedders P. A., Phys. Rev. B, 34 (1986) 3567; Drabold D. A. and Jones G. L., J. Phys. A: Math. Gen., 24 (1991) 4705; Drabold D. A. and Sankey o. F., Phys. Rev. Lett., 70 (1993) 3631.

    Article  ADS  Google Scholar 

  52. Dreyer W., J. Phys. A: Math. Gen., 20 (1987) 6505.

    Article  ADS  Google Scholar 

  53. Gorban A. N. and Karlin I. V., Phys. Rev. E, 54 (1996) R3109; Karlin I. V., Gorban A. N., Succi S. and Boffi V., Phys. Rev. Lett., 81 (1998) 6.

    Article  ADS  Google Scholar 

  54. Drobny G. and Buzek V., Phys. Rev. A, 65 (2002) 053410; Kiatgamolchai S., Myronov M., Mironov O. A., Kantser V. G., Parker E. H. C. and Whall T. E., Phys. Rev. E, 66 (2002) 036705; Bandyopadhyay K., Bhattacharya A. K., Parthapratim B. and Drabold D. A., Phys. Rev. E, 71 (2005) 057701.

    Article  ADS  Google Scholar 

  55. Skilling J. (Editor), Maximum Entropy and Bayesian Methods (Kluwer Academic Publishers) 2004.

  56. Grad H., Principles of the Kinetic Theory of gases, edited by Flugge S. Handbuch der Physik XII (Springer, Berlin) 1958.

    Google Scholar 

  57. Boillat G. and Ruggeri T., Continuum Mech. Thermodyn., 9 (1997) 205.

    Article  ADS  MathSciNet  Google Scholar 

  58. Dafermos C., Hyperbolic Conservation Laws in Continuum Physics (Springer-Verlag, Berlin) 2001.

    MATH  Google Scholar 

  59. Boillat G., C.R. Acad. Sc. Paris A, 278 (1974) 909; Ruggeri T. and Strumia A., Ann. Inst. Henri Poincaré A, 34 (1981) 65.

    Google Scholar 

  60. Junk M., J. Stat. Phys., 93 (1998) 1143; Dreyer W., Junk M. and Kunik M., Nonlinearity, 14 (2001) 881.

    Article  ADS  Google Scholar 

  61. Boltzmann L., Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Sitzungsberichte der Akademie der Wissenschaften Wien, 66 (1872) 275.

    Google Scholar 

  62. Cercignani C., Theory and application of the Boltzmann equation (Scottish Accademic Press) 1975.

  63. Villani C., A review of mathematical topics on collisional kinetic theory, edited by Friedlander S. and Serre D., Handbook of mathematical fluid dynamics, Vol. I (Elsevier Science) 2002.

  64. Nordheim L. W., Proc. R. Soc. London A, 119 (1928) 689.

    Article  ADS  Google Scholar 

  65. Uehling E. A. and Uhlenbeck G. E., Phys. Rev., 43 (1933) 552.

    Article  ADS  Google Scholar 

  66. Lichnerowicz A. and Marrot R., Proprietes statistiques des ensembles de particules en relativite restreinte, C. R. Acad. Sci. (Paris), 210 (1940) 759.

    Google Scholar 

  67. Jüttner F., Ann. Phys. (Leipzig), 34 (1911) 856; Jüttner F., Z. Phys., 47 (1928) 542.

    Article  ADS  Google Scholar 

  68. Tayler G. E. and Weinberg J. W., Phys. Rev., 122 (1961) 1342; Chernikov N. A., Acta Phys. Pol., 26 (1964) 1069.

    Article  ADS  MathSciNet  Google Scholar 

  69. Israel W., J. Math. Phys., 4 (1963) 1163.

    Article  ADS  Google Scholar 

  70. Stewart J. M., Non equilibrium relativistic theory, Springer Lect. Notes Phys., Vol. 10 (Springer Verlag) 1971.

  71. Groot S. R., Van leeuwen W. A. and Van weert ch. G., Relativistic kinetic theory (North Holland Publishing Company) 1980.

  72. Smith H. and Jensen H. H., Transport Phenomena (Claredon Press Oxford) 1989.

  73. Ruggeri T., Continuum Mech. Thermodyn., 1 (1989) 3.

    Article  ADS  MathSciNet  Google Scholar 

  74. Landau L. D. and Lifshitz E. M., Statistical Physics, Vol. 5 (Pergamon Press, London-Paris) 1959.

    Google Scholar 

  75. Mcdougall J. and Stoner E. C., Philos. Trans. R. Soc. London, 237 (1938) 67.

    ADS  Google Scholar 

  76. Robinson J. E., Phys. Rev., 83 (1951) 678.

    Article  ADS  MathSciNet  Google Scholar 

  77. Smith G. F., Int. J. Engng. Sci., 9 (1971) 899. Pennisi S. and Trovato M., Int. J. Engng. Sci., 25 (1987) 1059.

    Article  Google Scholar 

  78. Fischer A. E. and Marsden J. E., Commun. Math. Phys., 28 (1972) 1.

    Article  ADS  Google Scholar 

  79. Truesdell C. and Muncaster R. G., Fundamentals of Maxwell’s kinetic theory of a simple monoatomic gas, edited by Eilenberg S. and Bass H. (Academic Press, New York) 1980.

    Google Scholar 

  80. Canali C., Jacoboni C., Nava F., Ottaviani G. and Alberigi-quaranta A., Phys. Rev. B, 12 (1975) 2265.

    Article  ADS  Google Scholar 

  81. Jacoboni C. and Reggiani L., Rev. Mod. Phys., 55 (1983) 645.

    Article  ADS  Google Scholar 

  82. Reggiani L., Hot-electron transport in semiconductors. Topics in Applied Physics, Vol. 58 (Springer Verlag, Berlin) 1985.

  83. Hess K. (Editor), Monte Carlo Device Simulation: Full Band and Beyond (Kluwer Academic, Boston) 1991.

    MATH  Google Scholar 

  84. Fischetti M., IEEE Trans. Electron. Dev., 38 (1991) 634.

    Article  ADS  Google Scholar 

  85. Martin M. J., Gonzalez T., Velasquez J. E. and Pardo D., Semicond. Sci. Technol., 8 (1993) 1291; Starikov E., Shiktorov P., Gruzhinskis V., Gonzalez T., Martin M. J., Pardo D., Reggiani L. and Varani L., Semicond. Sci. Technol., 11 (1996) 865.

    Article  ADS  Google Scholar 

  86. Rees H. D., J. Phys. Chem. Solids, 30 (1969) 643.

    Article  ADS  Google Scholar 

  87. Vassel M. O., J. Math. Phys., 11 (1970) 408.

    Article  ADS  Google Scholar 

  88. Das A. and Lundstrom M. S., Solid-State Electron., 33 (1990) 1299.

    Article  ADS  Google Scholar 

  89. Han Z., Goldsman N. and Stettler M. A., Solid-State Electron., 43 (1999) 493.

    Article  ADS  Google Scholar 

  90. Kometer K., Zandler G. and Vogl P., Phys. Rev. B, 46 (1992) 1382.

    Article  ADS  Google Scholar 

  91. Zandler G., Carlo A. D., Kometer K., Lugli P., Vogl P. and Gornik E., IEEE Trans. Electron Dev. Lett., 14 (1993) 77.

    Article  ADS  Google Scholar 

  92. Hennancy K. A. and Goldsman N., Solid-State Electron., 36 (1993) 869.

    Article  ADS  Google Scholar 

  93. Vecchi M. C. and Rudan M., IEEE Trans. Electron Dev., 45 (1998) 230.

    Article  ADS  Google Scholar 

  94. Landauer R., Physica A, 194 (1993) 551.

    Article  ADS  Google Scholar 

  95. Gruzhinskis V., Starikov E., Shiktorov P., Reggiani L. and Varani L., J. Appl. Phys., 76 (1994) 5260.

    Article  ADS  Google Scholar 

  96. Starikov E., Shiktorov P., Gruzhinskis V., Gonzalez T., Martin M. J., Pardo D., Reggiani L. and Varani L., Semicond. Sci. Technol., 11 (1996) 865.

    Article  ADS  Google Scholar 

  97. Zimmermann J., Leroy Y. and Constant E., J. Appl. Phys., 49 (1978) 3378.

    Article  ADS  Google Scholar 

  98. Das P. and Ferry D. K., Solid-State Electron., 19 (1976) 851.

    Article  ADS  Google Scholar 

  99. Price P. J., J. Appl. Phys., 53 (1982) 8805; Price P. J., J. Appl. Phys., 54 (1983) 3616.

    Article  ADS  Google Scholar 

  100. Lugli P., Reggiani L. and Niez J. J., Phys. Rev. B, 40 (1989) 12382.

    Article  ADS  Google Scholar 

  101. Kuhn T., Reggiani L. and Varani L., Phys. Rev. B, 42 (1990) 11133.

    Article  ADS  Google Scholar 

  102. Nougier J. P., III-V Microelectronics, edited by Nougier J. P. (North-Holland) 1991, p. 1.

  103. Kuhn T., Reggiani L. and Varani L., Phys. Rev. B, 45 (1992) 1903.

    Article  ADS  Google Scholar 

  104. Vaissiere J. C., Nougier J. P., Varani L., Houlet P., Hlou L., Starikov E., Shiktorov P. and Reggiani L., Phys. Rev. B, 49 (1994) 11144.

    Article  ADS  Google Scholar 

  105. Varani L., Vaissiere J. C., Nougier J. P., Houlet P., Reggiani L., Starikov E., Shiktorov P., Gruzhinskis V. and Hlou L., J. Appl. Phys., 77 (1995) 665.

    Article  ADS  Google Scholar 

  106. Golinelli P., Varani L. and Reggiani L., Phys. Rev. Lett., 77 (1996) 6.

    Article  Google Scholar 

  107. Reggiani L., Starikov E., Shiktorov P., Gruzhinskis V. and Varani L., Semicond. Sci. Technol., 12 (1997) 141.

    Article  ADS  Google Scholar 

  108. Greiner A., Reggiani L., Kuhn T. and Varani L., Phys. Rev. Lett., 78 (1997) 1114.

    Article  ADS  Google Scholar 

  109. Similar results have been found, with MC metod, by Nedjalkov M., Kosina H. and Selberherr S., in Proceedings of SISPAD’99, edited by Taniguchi K. and Nakayama N. (Business Center for Academic Societies Japan, Kyoto) 1999, p. 155.

    Google Scholar 

  110. Brunetti R., Golinelli P., Rudan M. and Reggiani L., J. Appl. Phys., 85 (1999) 1572.

    Article  ADS  Google Scholar 

  111. Majorana A., Transp. Theory Stat. Phys., 20 (1991) 261; Majorana A., Nuovo Cimento B, 108 (1993) 871.

    Article  ADS  Google Scholar 

  112. Agmon N., Alhassid Y. and Levine R. D., J. Comp. Phys., 30 (1979) 250.

    Article  ADS  Google Scholar 

  113. Boots H. M. J., Phys. Rev. B, 46 (1992) 9428.

    Article  ADS  Google Scholar 

  114. Starikov E. and Shiktorov P., Fiz. Tekh. Polvprovodn., 22 (1988) 72.

    Google Scholar 

  115. Karlin I. V., Phys. Rev. B, 55 (1997) 6324.

    Article  ADS  Google Scholar 

  116. In particular, starting from a (13+9N)-field theory based on the method of Grad, ref. [16] showed (in the case of a monatomic gas) that the transition to a five-field theory by the Maxwellian iteration leads to the same results as the Chapman-Enskog approach when considering the successive approximations to the transport coefficents.

  117. Golinelli P., Brunetti R., Varani L., Vaissiere J. C., Nougier J. P., Reggiani L., Starikov E., Shiktorov P., Gruzhinskis V., Gonzalez T., Martin M. J. and Pardo D., Semicond. Sci. Technol., 12 (1997) 1511.

    Article  ADS  Google Scholar 

  118. Smith P. M., Inoue M. and Jeffrey frey, Appl. Phys. Lett., 37 (1980) 797.

    Article  ADS  Google Scholar 

  119. Hairer E. and Wanner G, Solving ordinary differential equations II, Stiff and differential-algebraic problems (Spriger-Verlag, Berlin) 1991; Shampine L. F., Numerical solution of ordinary differential equations (Chapman and Hall, New York) 1994.

    MATH  Google Scholar 

  120. Nessyahu H. and Tadmor E., J. Comput. Phys., 87 (1990) 408.

    Article  ADS  MathSciNet  Google Scholar 

  121. Friedrichs K. O. and Lax P. D., Proc. Natl. Acad. Sci. U.S.A., 68 (1971) 1686.

    Article  ADS  Google Scholar 

  122. Jeffrey A., Quasilinear Hyperbolic Systems and Waves, edited by Jeffrey A., Research Notes in Mathematics (Pitman, San Francisco) 1976.

    Google Scholar 

  123. Leveque R., Numerical Methods for Conservation Laws (Birkhäuser, Basel) 1990.

    Book  MATH  Google Scholar 

  124. Alhassid Y. and Levine R. D., J. Chem. Phys., 67 (1977) 4321.

    Article  ADS  Google Scholar 

  125. Alhassid Y. and Levine R. D., Phys. Rev. A, 18 (1978) 89.

    Article  ADS  MathSciNet  Google Scholar 

  126. Degond P. and Ringhofer C., J. Stat. Phys., 112 (2003) 587.

    Article  Google Scholar 

  127. Degond P., Mehats F. and Ringhofer C., J. Stat. Phys., 118 (2005) 625.

    Article  ADS  MathSciNet  Google Scholar 

  128. Chamon C., Oshikawa M. and Affleck I., Phys. Rev. Lett., 20 (2003) 206403.

    Article  ADS  Google Scholar 

  129. Bulgac A., Phys. Rev. Lett., 89 (2002) 050402.

    Article  ADS  Google Scholar 

  130. Manfredi G. and Hervieux P. A., Phys. Rev. Lett., 97 (2006) 190404.

    Article  ADS  Google Scholar 

  131. Kobayashi M. and Tsubota M., Phys. Rev. Lett., 94 (2005) 65302.

    Article  ADS  Google Scholar 

  132. Müller M., Schmalian J. and Fritz L., Phys. Rev. Lett., 103 (2009) 025301.

    Article  ADS  Google Scholar 

  133. Bertaina G., Pitaevskii L. and Stringari S., Phys. Rev. Lett., 105 (2010) 150402.

    Article  ADS  Google Scholar 

  134. Olshanii M., Perrin H. and Lorent V., Phys. Rev. Lett., 105 (2010) 095302.

    Article  ADS  Google Scholar 

  135. Eltsov V. B., Finne A. P., Hanninen R., Kopu J., Krusius M., Tsubota M. and Thuneberg E. V., Phys. Rev. Lett., 96 (2006) 215302.

    Article  ADS  Google Scholar 

  136. Bourne A., Wilkin N. K. and Gunn J. M. F., Phys. Rev. Lett., 96 (2006) 240401.

    Article  ADS  Google Scholar 

  137. Kartavenko V. G., Sov. J. Nucl. Phys., 40 (1984) 240.

    Google Scholar 

  138. Frensley W., Rev. Mod. Phys., 62 (1990) 745.

    Article  ADS  Google Scholar 

  139. Grubin H. L., Govindan T. R., Kreskovsky J. P. and Stroscio M. A., Solid-State Electron., 36 (1993) 1697.

    Article  ADS  Google Scholar 

  140. Wettstein A., Schenk A. and Fichtner W., IEEE Trans. Electron Dev., 48 (2001) 279.

    Article  ADS  Google Scholar 

  141. Connelly D., Yu Z. and Yergeau D., IEEE Trans. Electron Dev., 49 (2002) 619.

    Article  ADS  Google Scholar 

  142. Asenov A., Brown A. R. and Watling J. R., Solid-State Electron., 47 (2003) 1141.

    Article  ADS  Google Scholar 

  143. Ancona M. G. and Svizhenko A., J. Appl. Phys., 104 (2008) 073726.

    Article  ADS  Google Scholar 

  144. Ancona M. G., J. Comput. Electron., 10 (2011) 65.

    Article  Google Scholar 

  145. Tsuchiya H. and Ravaioli U., J. Appl. Phys., 89 (2001) 4023.

    Article  ADS  Google Scholar 

  146. Tsuchiya H., Horino M. and Miyoshi T., J. Comput. Electron., 2 (2003) 91.

    Article  Google Scholar 

  147. Riddet C., Brown A. R., Roy S. and Asenov A., J. Comput. Electron., 7 (2008) 231.

    Article  Google Scholar 

  148. Asenov A., Brown A. R., Roy G., Cheng B., Alexander C., Riddet C., Kovac U., Martinez A., Seoane N. and Roy S., J. Comput. Electron., 8 (2009) 349.

    Article  Google Scholar 

  149. Brown A. R., Watling J. R., Roy G., Riddet C., Alexander C. L., Kovac U., Martinez A. and Asenov A., J. Comput. Electron., 9 (2010) 187.

    Article  Google Scholar 

  150. Cimmelli V. A., Sellitto A. and Jou D., Phys. Rev. B, 81 (2010) 054301.

    Article  ADS  Google Scholar 

  151. Cimmelli V. A., Sellitto A. and Jou D., Phys. Rev. B, 82 (2010) 184302.

    Article  ADS  Google Scholar 

  152. Jou D., Lebon G. and Criado-Sancho M., Phys. Rev. E, 82 (2010) 031128.

    Article  ADS  Google Scholar 

  153. Chen G., Nanoscale Energy Transport and generation (Oxford University Press, Oxford) 2005.

    Google Scholar 

  154. Che J., Agin T. and Goddard W. A., Nanotechnology, 11 (2000) 65.

    Article  ADS  Google Scholar 

  155. Kim P., Shi L., Majumdar A. and Mceuen P. L., Phys. Rev. Lett., 87 (2001) 215502.

    Article  ADS  Google Scholar 

  156. Cahill D. G., Ford W. K., Goodson K. E., Mahan G. D., Majumdar A., Maris H. J., Merlin R. and Phillpot S. R., J. Appl. Phys., 93 (2003) 793.

    Article  ADS  Google Scholar 

  157. Fujii M., Zhang X., Xie H., Ago H., Takahashi K., Ikuta T., Abe H. and Shimizu T., Phys. Rev. Lett., 95 (2005) 065502.

    Article  ADS  Google Scholar 

  158. Xue Q. Z., Nanotechnology, 17 (2006) 1655.

    Article  ADS  Google Scholar 

  159. Collins P. G., Bando H. and Zettl A., Nanotecnology, 9 (1998) 153.

    Article  ADS  Google Scholar 

  160. Cui Y. and Lieber M., Science, 291 (2001) 851.

    Article  ADS  Google Scholar 

  161. Yang P., Wu Y. and Fan R., Int. J. Nanosci., 1 (2002) 1.

    Article  Google Scholar 

  162. Willingale L., Thomas A. G. R., Nilson P. M., Kaluza M. C., Bandyopadhyay S., Dangor A. E., Evans R. G., Fernandes P., Haines M. G., Kamperidis C., Kingham R. J., Minardi S., Notley M., Ridgers C. P., Rozmus W., Sherlock M., Tatarakis M., Wei M. S., Najmudin Z. and Krushelnick K., Phys. Rev. Lett., 105 (2010) 095001.

    Article  ADS  Google Scholar 

  163. Ancona M. G. and Tierstein H. F., Phys. Rev. B, 35 (1987) 7959.

    Article  ADS  Google Scholar 

  164. Ancona M. G. and Iafrate G. J., Phys. Rev. B, 39 (1989) 9536.

    Article  ADS  Google Scholar 

  165. Gardner C., SIAM J. Appl. Math., 54 (1994) 409.

    Article  ADS  MathSciNet  Google Scholar 

  166. Gardner C. and Ringhofer C., Phys. Rev. E, 53 (1996) 157.

    Article  ADS  Google Scholar 

  167. Kompaneets A. S. and Pavlovskii E. S., Sov. Phys. JETP, 4 (1957) 328.

    Google Scholar 

  168. Hohenberg P. and Kohn W., Phys. Rev., 136 (1964) B864.

    Article  ADS  Google Scholar 

  169. Perrot F., Phys. Rev. A, 20 (1979) 586.

    Article  ADS  Google Scholar 

  170. Shih C. C., Phys. Rev. A, 14 (1976) 919.

    Article  ADS  Google Scholar 

  171. Allan N. L., West C. G., Cooper D. L., Grout P. J. and March N. H., J. Chem. Phys., 33 (1985) 4562.

    Article  ADS  Google Scholar 

  172. Yang W., Phys. Rev. A, 34 (1986) 4575.

    Article  ADS  Google Scholar 

  173. Yang W., Parr R. G. and Lee C., Phys. Rev. A, 34 (1986) 4586.

    Article  ADS  Google Scholar 

  174. Engel E., Larocca P. and Dreizler R. M., Phys. Rev. B, 49 (1994) 16728.

    Article  ADS  Google Scholar 

  175. Parr R. G. and Yang W., Density-Functional Theory of Atoms and Molecules (Oxford University Press) 1994.

  176. Klimontovich Yu., Sov. Phys. JETP, 6 (1958) 753.

    ADS  Google Scholar 

  177. Imre K., Ozizmir E., Rosenbaum M. and Zweifel P., J. Math. Phys., 8 (1967) 1097.

    Article  ADS  Google Scholar 

  178. For the sake of simplicity, in the text we neglect the explicit dependence on time, being in general Ψ(r) = Ψ(r, t) and U(r) = U(r, t). Consequently, also the quantities \(H = H(r,p,t),\langle {\bf{r}}|\widehat \varrho |{\bf{r}}'\rangle = \langle \Psi ({\bf{r}}',t)\Psi ({\bf{r}},t)\rangle \,{\rm{and}}\,FW = FW({\bf{r}},{\bf{p}},t)\) will depend explicitly on t.

  179. Brittin W. E. and Chappell W. R., Rev. Mod. Phys., 34 (1962) 620.

    Article  ADS  Google Scholar 

  180. Yang C. N., Rev. Mod. Phys., 34 (1962) 694.

    Article  ADS  Google Scholar 

  181. Silin V. P., Sov. Phys. JETP, 6 (1958) 387; Silin V. P., Sov. Phys. JETP, 35 (1959) 870; Klimontovich Yu., Sov. Phys. JETP, 25 (1967) 820; Klimontovich Yu. and Ebeling W., Sov. Phys. JETP, 36 (1973) 476.

    ADS  Google Scholar 

  182. Parkins A. S. and Walls D. F., Phys. Rep., 303 (1998) 1.

    Article  ADS  Google Scholar 

  183. Ketterle W. and Miesner H. J., Phys. Rev. A, 56 (1997) 3291; Kagan yu., svistunov B. V. and Shlyapnikov G. V., JETP Lett., 42 (1985) 209.

    Article  ADS  Google Scholar 

  184. Ploszajczak M. and Rhoades-Brown M. J., Phys. Rev. Lett., 55 (1985) 147; Ploszajczak M. and Rhoades-Brown M. J., Phys. Rev. D, 33 (1986) 3686.

    Article  ADS  Google Scholar 

  185. Hillery M., O’COnell R., Scully M. and Wigner E. P., Phys. Rep., 106 (1984) 121.

    Article  ADS  MathSciNet  Google Scholar 

  186. Kadanoff L. P. and Baym G., Quantum Statistical Mechanics, Chap. 3, §3 (W.A. Benjamin, Inc., New York) 1962.

    MATH  Google Scholar 

  187. Gardiner S. A., Jaksch D., Dum R., Cirac J. I. and Zoller P., Phys. Rev. A, 62 (2000) 023612.

    Article  ADS  Google Scholar 

  188. Castin Y. and Dum R., Phys. Rev. A, 57 (1998) 3008.

    Article  ADS  Google Scholar 

  189. Fersino E., Mussardo G. and Trombettoni A., Phys. Rev. A, 7 (2008) 053608.

    Article  ADS  Google Scholar 

  190. Klimontovich Yu., Kinetic theory of nonideal gases & nonideal plasmas, Part III, Vol. 105 (Pergamon press) 1982.

  191. Yvon J., Theorie Statistique des Fluides et l’Equation d’Etat, Actes sientifique et industrie No. 203 (Hermann, Paris) 1935.

    Google Scholar 

  192. Bogouliov N. N., J. Exp. Theor. Phys., 16 (1946) 691; Bogouliov N. N., J. Phys. USSR, 10 (1946) 265; Bogouliov N. N. and Gurov K. P., J. Exp. Theor. Phys., 17 (1947) 614.

    Google Scholar 

  193. Kirkwood J. G., J. Chem. Phys., 14 (1946) 180;347(E); Kirkwood J. G., J. Chem. Phys., 15 (1947) 72;155(E).

    Article  ADS  Google Scholar 

  194. Born M. and Green H. S., Proc. R. Soc. A, 188 (1946) 10.

    ADS  Google Scholar 

  195. Wyld H. W. and Fried B. D., Ann. Phys. (N.Y.), 23 (1963) 374.

    Article  ADS  Google Scholar 

  196. Tran D. B., Thoai and Haug H., Phys. Rev. B, 41 (1993) 3574.

    Article  ADS  Google Scholar 

  197. Axt V. M. and Stahl A., Z. Phys. B, 93 (1994) 195.

    Article  ADS  Google Scholar 

  198. Rossi F., Kuhn T., Rev. Mod. Phys., 74 (2002) 895.

    Article  ADS  Google Scholar 

  199. Escobedo M. and Velázquez J. J. L., J. Phys. A, 41 (2008) 395208.

    Article  MathSciNet  Google Scholar 

  200. Iafrate G. J., Grubin H. L. and Ferry D. K., J. Phys. (Paris) C, 7 (1981) 307.

    Google Scholar 

  201. Lill J. V., Haftel M. I. and Herling G. H., Phys. Rev. A, 39 (1989) 5832; Lill J. V., Haftel M. I. and Herling G. H., J. Chem. Phys., 90 (1989) 4940.

    Article  ADS  MathSciNet  Google Scholar 

  202. Hughes K. H., Parry S. M. and Burghardt I., J. Chem. Phys., 130 (2009) 054115-1.

    Article  ADS  Google Scholar 

  203. Grandy W. T., Principles of Statistical Mechanics, Vol. 1 and 2 (Reidel, Dordrect) 1987.

  204. Grabert H., Projection Operators Technique in Nonequilibrium Statistics (Springer) 1981.

  205. Zubarev D. N., Morozov V. N. and Röpke G., Statistical Mechanics of Nonequilibrium Processes, Vol. 1 and 2 (Akademie Verlag, Berlin) 1996.

  206. Luzzi R., Vasconcellos A. R. and Ramos J. G., Predictive statistical mechanics: a non-equilibrium ensemble formalism (Kluwer, Dordecht) 2002.

    Book  MATH  Google Scholar 

  207. Von neumann J., The Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton) 1955.

    MATH  Google Scholar 

  208. Gyftopoulos E. P. and Çubukçu E., Phys. Rev. E, 55 (1997) 3851.

    Article  ADS  MathSciNet  Google Scholar 

  209. Manfredi G. and Feix M. R., Phys. Rev. E, 62 (2000) 4665.

    Article  ADS  Google Scholar 

  210. Renyi A., Probability Theory (North Holland, Amsterdam) 1970.

    MATH  Google Scholar 

  211. Beck C. and Schlögl F., Thermodynamics of Chaotic Systems (Cambridge University Press, Cambridge, UK) 1993.

    Book  MATH  Google Scholar 

  212. Moyal J. E., Proc. Cambridge Philos. Soc., 45 (1949) 99.

    Article  ADS  MathSciNet  Google Scholar 

  213. Wigner E. P., Phys. Rev., 40 (1932) 749.

    Article  ADS  Google Scholar 

  214. Carruthers P. and Zachariasen F., Rev. Mod. Phys., 55 (1983) 245.

    Article  ADS  Google Scholar 

  215. Within this approximation, all terms containing the quantities \({{\partial \ln T} \over {\partial {x_i}}}\,{\rm{and}}\,{{{\partial ^2}\ln T} \over {\partial {x_i}\partial {x_j}}}\) in eq. (255), can be neglected with respect to the remaining terms, and we obtain eq. (256).

  216. We remark that another possible alternative to the present procedure is that reported in ref. [11]. In this case it is possible to assume a simplified equation of state by defining an effective temperature through the relation \({k_B}\tilde T = (3P/2n)(I_2^ \pm /I_4^ \pm )\). Obviously, in this case we cannot assume β = (kBT̃)−1. Thus, on the one hand, we obtain a simplified relation for the equation of state but, on the other hand, by using the condition (265), we are obliged to describe the Lagrange multiplier β by means of differential constraints for the system.

  217. Lindsay R. B., Introduction to physical statistics (John Wiley & Sons, New York; Chapman & Hall, Englewood Cliffs, N.J., London) 1958.

    Google Scholar 

  218. Sommerfeld A. A., Z. Phys., 47 (1928) 1.

    Article  ADS  Google Scholar 

  219. Rhodes P., Proc. R. Soc. London, Ser. A, 204 (1950) 396.

    Article  ADS  Google Scholar 

  220. Dingle R. B., Asymptotic Expansions: Their derivation and interpretation (Academic Press, New York) 1973.

    MATH  Google Scholar 

  221. Using the present formalism, the tensors M(0)|〈ik and M(0)|ik are connected with the usual definition of stress deviator Tik and of stress tensor Tik by means of the relations Tik =mM(0)|〈ik and Tik = −mM(0)|ik.

  222. Lee C. and Ghosh S. K., Phys. Rev. A, 33 (1986) 3506.

    Article  ADS  Google Scholar 

  223. Gyarmati I., Gyarmati E. and Heinz W. F., Nonequilibrium Thermodynamics: Field Theory and Variational Principles (Springer, New York) 1970.

    Google Scholar 

  224. Shakhparonov M. I., Nonequilibrium thermodynamics and the least action principle, in: Nonequilibrium Process Thermodynamics (in Russian) (Nauka, Moscow) 1987, p. 87.

    Google Scholar 

  225. Feynman R. P. and Hibbs A., Quantum Mechnanics and Path Integral (McGraw Hill, New York) 1965.

    MATH  Google Scholar 

  226. Nordheim L., Müller Pouillets Lehrbuch der Physik, 4/4 (Vieweg, Brunswick) 1934 P. 271.

  227. Goano M., Solid-State Electron., 36 (1993) 217.

    Article  ADS  Google Scholar 

  228. Goano M., ACM Trans. Math. Softw., 21 (1995) 221.

    Article  Google Scholar 

  229. Macleod A. J., ACM Trans. Math. Softw., 24 (1998) 1.

    Article  Google Scholar 

  230. Beer A. C., Chase M. N. and Choquard P. F., Helv. Phys. Acta, 28 (1955) 529.

    MathSciNet  Google Scholar 

  231. Blakemore J. S., Semiconductor Statistics (Dover, New York) 1987.

    MATH  Google Scholar 

  232. Cody W. J. and Thacher H. C., Math. Comp., 21 (1967) 30; 525(E).

    Google Scholar 

  233. Bednarczyk D. and Bernarczyk J., Phys. Lett. A, 64 (1978) 409.

    Article  ADS  Google Scholar 

  234. Aymerich-Humet X., Serra-Mestres F. and Millan J., Solid-State Electron., 24 (1981) 981.

    Article  ADS  Google Scholar 

  235. Aymerich-Humet X., Serra-Mestres F. and Millan J., J. Appl. Phys., 54 (1983) 2850.

    Article  ADS  Google Scholar 

  236. Van halen P. and Pulfrey D. L., J. Appl. Phys., 57 (1985) 5271;2264(E).

    Article  ADS  Google Scholar 

  237. Trellakis A., Galick A. T. and Ravaioli U., Solid-State Electron., 41 (1997) 771.

    Article  ADS  Google Scholar 

  238. Cloutman L. D., Astrophys. J. Suppl. Ser., 71 (1989) 677.

    Article  ADS  Google Scholar 

  239. Gautschi W., Comput. Phys. Commun., 74 (1993) 233.

    Article  ADS  MathSciNet  Google Scholar 

  240. Mohankumar N. M. and Natarajan A., Comput. Phys. Commun., 101 (1997) 47.

    Article  ADS  Google Scholar 

  241. Wolfe C. C. M., Holonyak N. Jr. and Stilman G. E., Physical properties of semiconductors (Prentice-Hall, Englewood Cliffs, N.J.) 1989.

    Google Scholar 

  242. Delahaye J. P., Sequence Transformations (Springer-Verlag, Berlin) 1988.

    Book  MATH  Google Scholar 

  243. Hasegawa A., Optical Solitons in Fibers (Springer-Verlag, Berlin) 1989.

    Book  Google Scholar 

  244. Gatz S. and Herrmann J., Opt. Lett., 17 (1992) 484.

    Article  ADS  Google Scholar 

  245. De angelis C., IEEE J. Quantum Electron., 30 (1994) 818.

    Article  ADS  Google Scholar 

  246. Kivshar Y. and Agrawal G. P., Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego) 2003.

    Google Scholar 

  247. Dodd R. K., Eilbeck J. C., Gibbon J. D. and Morris H. C., Solitons and Nonlinear Wave Equations (Academic, New York) 1982.

    MATH  Google Scholar 

  248. Liu H., Beech R., Osman F., He X. T., Lou S. Y. and Hora H., J. Plasma Phys., 70 (2004) 415.

    Article  ADS  Google Scholar 

  249. Dalfovo F., Giorgini S., Pitaevskii L. P. and Stringari S., Rev. Mod. Phys., 71 (1999) 463.

    Article  ADS  Google Scholar 

  250. Davydov A. S., Solitons in Molecular Systems (Reidel, Dordrecht) 1985.

    Book  MATH  Google Scholar 

  251. For example, only by using eq. (C. 131) it is possible to determine the closure relation (315) for a completely degenerate Fermi gas, that is exactly consistent with the more general closure property (318) obtained for any degeneracy level.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trovato, M., Reggiani, L. Maximum entropy principle and hydrodynamic models in statistical mechanics. Riv. Nuovo Cim. 35, 99–266 (2012). https://doi.org/10.1393/ncr/i2012-10075-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2012-10075-8

Navigation