Skip to main content
Log in

The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A systematic presentation of the quasi-linear first order symmetric hyperbolic systems of Friedrichs is presented. A number of sharp regularity and smoothness properties of the solutions are obtained. The present paper is devoted to the case ofR n with suitable asymptotic conditions imposed. As an example, we apply this theory to give new proofs of the existence and uniqueness theorems for the Einstein equations in general relativity, due to Choquet-Bruhat and Lichnerowicz. These new proofs usingfirst order techniques are considerably simplier than the classical proofs based onsecond order techniques. Our existence results are as sharp as had been previously known, and our uniqueness results improve by one degree of differentiability those previously existing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R.: Lectures on global analysis. Mimeographed, Princeton University.

  2. Arnowitt, R., Deser, S., Misner, C. W.: The dynamics of general relativity. In: Witten, L. (Ed.): Gravitation; an introduction to current research. New York: John Wiley 1962.

    Google Scholar 

  3. Fourès-Bruhat, Y.: Théorèm d'existence pour certain systèmes d'équations aux dérivées partielles non linéaires. Acta Math.88, 141–225 (1952).

    Google Scholar 

  4. —— Cauchy problem. In: Witten, L. (Ed.): Gravitation; an introduction to current research. New York: John Wiley 1962.

    Google Scholar 

  5. Cantor, M.: Diffeomorphism groups over manifolds with non-compact base (preprint).

  6. Choquet-Bruhat, Y.: Espaces-temps einsteiniens généraux, chocs gravitationels. Ann. Inst. Henri Poincaré8, 327–338 (1968).

    Google Scholar 

  7. —— SolutionsC d'équations hyperboliques non linéares. C. R. Acad. Sci. Paris272, 386–388 (1971).

    Google Scholar 

  8. —— Problèmes mathématiques en relativité. Actes Congres intern. Math. Tome3, 27–32 (1970).

    Google Scholar 

  9. C solutions of hyperbolic non-linear equations; applications in general relativity and gravitation. Gen. Rel. Grav.1 (1971).

  10. — Stabilité de solutions d'équations hyperboliques non linéares. Application à l'espace-temps de Minkowski en relativité générale. C. R. Acad. Sci. Paris274, Ser. A. (843) (1972).

  11. —— Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. math. Phys.14, 329–335 (1969).

    Article  Google Scholar 

  12. Chernoff, P.: Note on product formulas for operator semigroups. J. Funct. An.2, 238–242 (1968).

    Article  Google Scholar 

  13. Chernoff, P., Marsden, J.: On continuity and smoothness of group actions. Bull. Am. Math. Soc.76, 1044–1049 (1970).

    Google Scholar 

  14. — Hamiltonian systems and quantum mechanics (in preparation).

  15. Courant, R., Hilbert, D.: Methods of mathematical physics, Vol. II. New York: Interscience 1962.

    Google Scholar 

  16. Dionne, P.: Sur les problèmes de Cauchy bien posés. J. Anal. Math. Jerusalem10, 1–90 (1962/63).

    Google Scholar 

  17. Dunford, N., Schwartz, J.: Linear operators (I). New York: Interscience 1962.

    Google Scholar 

  18. Ebin, D.: On the space of Riemannian metrics. In: Proc. Symp. Pure Math., vol. 15. Providence, R. I.: Math. Soc. 1970.

  19. —— Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math.92, 102–163 (1970).

    Google Scholar 

  20. Fischer, A., Marsden, J.: The Einstein equations of evolution — A geometric approach. J. Math. Phys.13, 546–568 (1972).

    Article  Google Scholar 

  21. —— —— General relativity, partial differential equations and dynamical systems. In: Proc. Symp. Pure Math., vol. 23. Providence, Rhode Island: Am. Math. Soc. 1972 (to appear).

    Google Scholar 

  22. Fock, V.: The theory of space, time and gravitation. New York: MacMillan 1964.

    Google Scholar 

  23. Friedrichs, K. O.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math.7, 345–392 (1954).

    Google Scholar 

  24. — A limiting process leading to the equations of relativistic and nonrelativistic fluid dynamics. In: La Magnétohydrodynamique Classique et Relativiste, Lille 1969. Colloques Internat. CNRS, No. 184, Paris, 1970.

  25. Hawking, S.: Stable and generic properties in general relativity. Gen. Rel. Grav.1, 393–400 (1971).

    Article  Google Scholar 

  26. Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  27. ——: Integration of the equation of evolution in a Banach space. J. Math. Soc. Japan5, 208–234 (1953).

    Google Scholar 

  28. ——: Approximation theorems for evolution equations. In: Aziz, A. (Ed.): Lectures in Differential Equations. Mathematical Studies, Vol. 19. New York: Van Nostrand 1969.

    Google Scholar 

  29. ——: Linear evolution equations of “hyperbolic type”. J. Fac. Sci. Univ. Tokyo17, 241–258 (1970).

    Google Scholar 

  30. Lang, S.: Introduction to differentiable manifolds. New York: Interscience 1962.

    Google Scholar 

  31. Lax, P.: Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations. Commun. Pure Appl. Math.8, 615–633 (1955).

    Google Scholar 

  32. Leray, J.: Lectures on hyperbolic equations with variable coefficients. Princeton, Inst. for Adv. Stud. 1952.

  33. Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics. New York: Benjamin 1967.

    Google Scholar 

  34. Marsden, J., Ebin, D., Fischer, A.: Diffeomorphism groups, hydrodynamics and relativity. In: Proc. Canadian Math. Congress XIII, Halifax (1971) (to appear).

  35. Nirenberg, L.: On elliptic differential equations. Scuola Norm. Super. Pisa13, 115–162 (1959).

    Google Scholar 

  36. Palais, R.: Seminar on the Atiyah Singer index theorem. Ann. of Math. Studies, no. 57. Princeton: Princeton University Press 1965.

    Google Scholar 

  37. Phillips, R.: Dissipative operators and hyperbolic systems of partial differential equations. Trans. Am. Math. Soc.90, 193–254 (1959).

    Google Scholar 

  38. Schulenberger, J., Wilcox, C.: Completeness of the wave operators for perturbations of uniformly propagative systems. J. Funct. An.7, 447–474 (1971).

    Article  Google Scholar 

  39. Segal, I.: Non-linear semi-groups. Ann. Math.78, 339–364 (1963).

    Google Scholar 

  40. Sobolev, S. L.: Applications of functional analysis in mathematical physics. Providence, R. I.: Am. Math. Soc. 1963.

  41. Synge, J. L.: Relativity: The general theory. Amsterdam: North-Holland Publ. Co. 1960.

    Google Scholar 

  42. Wilcox, C.: The domain of dependence inequality for symmetric hyperbolic systems. Bull. Am. Math. Soc.70, 149–154 (1964).

    Google Scholar 

  43. Yosida, K.: Functional Analysis. Berlin-Heidelberg-New York: Springer 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by AEC Contract AT(04-3)-34.

Partially Supported by NSF Contract GP-8257.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, A.E., Marsden, J.E. The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I. Commun.Math. Phys. 28, 1–38 (1972). https://doi.org/10.1007/BF02099369

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099369

Keywords

Navigation