Skip to main content
Log in

Applications of carbon nanotubes for cancer research

  • Original Article
  • Published:
NanoBiotechnology

Abstract

Carbon nanotubes have many unique properties such as high surface area, hollow cavities, and excellent mechanical and electrical properties. Interfacing carbon nanotubes with biological systems could lead to significant applications in various disease diagnoses. Significant progress in interfacing carbon nanotubes with biological materials has been made in key areas such as aqueous solubility, chemical and biological functionalization for biocompatibility and specificity, and electronic sensing of proteins. In addition, the bioconjugated nanotubes combined with the sensitive nanotube-based electronic devices would enable sensitive biosensors toward medical diagnostics. Furthermore, recent findings of improved cell membrane permeability for carbon nanotubes would also expand medical applications to therapeutics using carbon nanotubes as carriers in gene delivery systems. This article reviews the current trends in biological functionalization of carbon nanotubes and their potential applications for breast cancer diagnostics. The article also reports the applications of confocal microscopy for use in understanding the interactions of biological materials such as antibodies on carbon nanotubes that are specific to surface receptors in breast cancer cells. Furthermore, a nanotube-field-effect transistor is demonstrated for electronic sensing of antibodies that are specific to surface receptors in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruoff, R. S. and Lorents, D. C. (1995), Carbon 33, 925–930.

    Article  CAS  Google Scholar 

  2. Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, New York.

    Google Scholar 

  3. Ebbesen, T. W. (1997), Carbon Nanotubes: Preparation and Properties, CRC Press, Boca Raton, FL.

    Google Scholar 

  4. Bockrath, M., Cobden, D. H., McEuen, P. L., et al. (1997). Science 275, 1922–1925.

    Article  Google Scholar 

  5. Yakobson, B. I. and Smalley, R. E. (1997), Am. Scientist 85, 324.

    Google Scholar 

  6. Ajayan, P. M. (1999), Chem. Rev. 99, 1787.

    Article  CAS  Google Scholar 

  7. Edelmann, F. T. (1999), Angew. Chem. Int. Ed. 38, 1381.

    Article  CAS  Google Scholar 

  8. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E. (1996), Nature 384, 147.

    Article  CAS  Google Scholar 

  9. De Heer, W. A., Chatelain, A., and Ugarte, D. (1995), Science 270, 1179.

    Article  Google Scholar 

  10. Kong, J., Franklin, N. R., Zhou, et al. (2000), Science 287, 622.

    Article  CAS  Google Scholar 

  11. Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C. (2001), Science 294, 1317.

    Article  CAS  Google Scholar 

  12. Wong, S. S., Joselevich, E., Woolley, A., Cheung, C. L., and Lieber, C. M. (1998), Nature 394, 52.

    Article  CAS  Google Scholar 

  13. Koshino, A., Yudasaka, M., Zhang, M., and Iijima, S. (2001), Nano Lett. 1, 361.

    Article  Google Scholar 

  14. Georgakilas, V., Kordatos, K., Prato, M., Guldi, D. M., Holzinger, M., and Hirsch, A. (2002), J. Am. Chem. 124, 760.

    Article  CAS  Google Scholar 

  15. Davis, J. J., Green, L. H. M., Hill, H. A. O., et al. (1998), Inorg. Chem. Acta. 272, 261–266.

    Article  CAS  Google Scholar 

  16. Chen, R. J., Zhang, Y., Wang, D., and Dai, H. (2001), J. Am. Chem. Soc. 123, 3838.

    Article  CAS  Google Scholar 

  17. Chen, R. J., Bangsaruntip, S., Drouvalakis, K. A., et al. (2003). Proc. Natl. Acad. Sci. USA 100, 4984.

    Article  CAS  Google Scholar 

  18. Star, A., Gabriel, J. C. P., Bradley, K., and Gruner, G. (2003), Nano Lett. 3, 459.

    Article  CAS  Google Scholar 

  19. Chen, R. J., Choi, H. C., Bangsaruntip, S., et al. (2004), J. Am. Chem. Soc. 126, 1563.

    Article  CAS  Google Scholar 

  20. Ijiima, S. (1991), Nature 354, 56–58.

    Article  Google Scholar 

  21. http://www.nasa.gov/Groups/SciTech/nano/images/images.html/

  22. Ijiima, S. and Ichihashi, T. (1993), Nature 363, 603–605.

    Article  Google Scholar 

  23. Thess, A., Lee, R., Nikolaev, P., et al. (1996), Science 273, 483–487.

    Article  CAS  Google Scholar 

  24. Kong, J., Soh, H.T., Cassell, A., Quate, C. F., and Dai, H. (1998), Nature 395, 878.

    Article  CAS  Google Scholar 

  25. Pompeo, F. and Resasco, D. E. (2002), Nano Lett. 2, 369.

    Article  CAS  Google Scholar 

  26. Georgakilas, V., Tagmatarchis, N., Pantarotto, D., Bianco, A., Briand, J. P., and Prato, M. (2002), Chem. Commun. 24, 3050.

    Article  Google Scholar 

  27. Dwyer, C., Guthold, M., Falvo, M., Washburn, S., Superfine, R., and Erie, D. (2002), Nanotechnology 13, 601.

    Article  CAS  Google Scholar 

  28. Baker, S. E., Cai, W., Lasseter, T. L., Weidkamp, K. P., and Hamers, R. J. (2002), Nano Lett. 2, 1413.

    Article  CAS  Google Scholar 

  29. Garg, A. and Sinnott, S. B. (1998). Chem. Phys. Lett. 295, 273.

    Article  CAS  Google Scholar 

  30. Bahr, J. L., Yang, J., Kosynkin, D. V., Bronikowski, M. J., Smalley, R. E., and Tour, J. M. (2001), J. Am. Chem. Soc. 123, 6536.

    Article  CAS  Google Scholar 

  31. Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., and Yodh, A. G. (2003), Nano Lett. 3, 269.

    Article  CAS  Google Scholar 

  32. Matarredona, O., Rhoads, H., Li, Z., Harwell, H. J., Balzano, L., and Resasco, E. (2003), J. Phys. Chem. B 107, 13357.

    Article  CAS  Google Scholar 

  33. Burchell, T. D. (1999). Carbon Materials for Advanced Technologies, Pergamon, New York.

    Google Scholar 

  34. Chen, B. X., Wilson, S. R., Das, M., Coughlin, D. J., and Erlanger, B. F. (1998), Proc. Natl. Acad. Sci. USA 95, 10809.

    Article  CAS  Google Scholar 

  35. Braden, B. C., Fernando, A. G., Chen, B. X., Kirschner, A. N., Wilson, S. R., and Erlanger B. F. (2000), Proc. Natl. Acad. Sci. USA 97, 12193.

    Article  CAS  Google Scholar 

  36. Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T. W., and Mioskowski, C. (1999), Angew. Chem. Int. Ed. 38, 1912–1915.

    Article  CAS  Google Scholar 

  37. Azamian, B. R., Davis, J. J., Coleman, K. S., Bagshaw, C. B., and Green, M. L. H. (2002), J. Am. Chem. Soc. 124, 12664.

    Article  CAS  Google Scholar 

  38. Huang, W., Taylor, S., Fu, K., et al. (2002), Nano Lett. 2, 311.

    Article  CAS  Google Scholar 

  39. Shim, M., Kam, N. W. S., Chen, R. J., Li, Y., and Dai, H. (2002), Nano Lett. 2, 285.

    Article  CAS  Google Scholar 

  40. Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S., and Whitesides, G. M. (2001), Langmuir 17, 5605.

    Article  CAS  Google Scholar 

  41. Lin, Y., Allard, L. F., and Sun, Y. P. (2004), J. Phys. Chem. B 108, 3760.

    Article  CAS  Google Scholar 

  42. Sirdeshmukh, R., Teker, K., and Panchapakesan, B. (2004) in Biological and Bioinspired Materials and Devices, Aizenberg, J., Landis, W. J., Orme, C., and Wang, R. eds., Materials Research Society Symposium Proc. 823, W4.1–W4.3 Warrendale, PA, 2004.

  43. Teker K., Sirdeshmukh, R., and Panchapakesan, B. (2004), IEEE Proceedings on 2004 International Conference on MEMS, Nano and Smart Systems, 47–51.

  44. Teker, K. and Panchapakesan, B. (2004), Proceedings of the IEEE Sensors, Austria, Vienna.

  45. Teker, K. and Panchapakesan, B. (2005), IEEE Sensors, in press.

  46. Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, P. (1998), Appl. Phys. Lett. 73, 2447.

    Article  CAS  Google Scholar 

  47. Jhi, S.-H., Louie, S. G., and Cohen, M. L. (2000), Phys. Rev. Lett. 85, 1710.

    Article  CAS  Google Scholar 

  48. Ulbricht, H., Moos, G., and Hertel, T. (2002), Phys. Rev. B 66, 075404.

    Google Scholar 

  49. Shim, M., Javey, A., Kam, N. W. S., and Dai, H. (2001), J. Am. Chem Soc. 123, 11,512.

    Google Scholar 

  50. Bradley, K., Briman, M., Star, A., and Gruner, G. (2004), Nano Lett. 4, 253.

    Article  CAS  Google Scholar 

  51. Lee, S. W. and Laibinis, P. E. (1998), Biomaterials 19, 1669.

    Article  CAS  Google Scholar 

  52. Pantarotto, D., Briand, J., Prato, M. and Bianco, A. (2004), Chem. Commun. 1, 16.

    Article  Google Scholar 

  53. Pantarotto, D., Singh, R., McCarthy, D., et al. (2004), Angew. Chem. Int. Ed. 43, 5242.

    Article  CAS  Google Scholar 

  54. Shi Kam, N. W., Jessop, T. C., Wender, P. A. and Dai, H. (2004), J. Am. Chem. Soc. 126, 6850.

    Article  Google Scholar 

  55. Lin, Y., Taylor, S., Li, H., et al. (2004), J. Mater. Chem. 14, 527.

    Article  CAS  Google Scholar 

  56. Furtado, C. A., Kim, U. J., Gutierrez, H. R., Pan, L., Dickey, E. C., and Eklund P. C. (2004), J. Am. Chem. Soc. 126, 6095.

    Article  CAS  Google Scholar 

  57. Erlanger, B. F., Cheng, B. X., Zhu, M., and Brus, L. (2001), Nano Lett. 1, 465.

    Article  CAS  Google Scholar 

  58. Hayes, D. F., Walker, T. M., Singh, B., et al. (2002), Int. J. Oncol. 21(5),1111–1117.

    CAS  Google Scholar 

  59. Guvakova, M. A. and Surmacz, E. (1997), Exp. Cell. Res. 231(1), 149.

    Article  CAS  Google Scholar 

  60. Le Roy, X., Escot, C., Brouillet, J. P., et al. (1991), Oncogene 6(3), 431–437.

    Google Scholar 

  61. Prakash, R., Washburn, S., Superfine, R., Cheney, E., and Malvo, M. R. (2003), Appl. Phys. Lett. 83, 1219.

    Article  CAS  Google Scholar 

  62. Manders, E. M. M., Verbeek, F. J., and Aten, J. A. (1993), J. Microsc. 169, 375.

    Google Scholar 

  63. Teker, K., Sirdeshmukh, R., and Panchapakesan, B. (2004), IEEE Sensors 2004, Oct. 2004, Vienna, Austria.

  64. Bradley, K., Gabriel, J.-C. P., Briman, M., Star, A., and Gruner, G. (2003), Phys. Rev. Lett. 91, 218301.

    Article  Google Scholar 

  65. Chang, H., Lee, J. D., Lee, S. M., and Lee, Y. H. (2001), Appl. Phys. Lett. 79, 3863.

    Article  CAS  Google Scholar 

  66. Kong, J. and Dai, H. (2001), J. Phys. Chem. B 105, 2890.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaji Panchapakesan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teker, K., Sirdeshmukh, R., Sivakumar, K. et al. Applications of carbon nanotubes for cancer research. Nanobiotechnol 1, 171–182 (2005). https://doi.org/10.1385/NBT:1:2:171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NBT:1:2:171

Key Words

Navigation