Skip to main content

Carbon Nanotubes for Bio-imaging Applications

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

The carbon nanotubes, a member of nano-carbon materials family, has been widely explored in the field of drug delivery, gene delivery, bio-imaging, and other biomedical applications with enhanced activity. Carbon nanotubes exist in the form of single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT); by virtue of the distinguishable optical, mechanical, physiochemical, versatile photophysical properties, and biocompatible nature, carbon nanotubes have been specifically found use in Raman, nuclear, photoacoustic or optoacoustic, fluorescence, and magnetic resonance imaging of biological samples. Hence herein this chapter, we draw your attention towards recent application of carbon nanotubes as imaging probes and their role in preclinical studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al Faraj A, Cieslar K, Lacroix G, Gaillard S, Canet-Soulas E, Crémillieux Y (2009) In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett 9(3):1023–1027

    Article  Google Scholar 

  • Al Faraj A, Shaik AP, Shaik AS (2015) Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int J Nanomedicine 10:157

    Google Scholar 

  • Ando Y, Zhao X, Shimoyama H et al (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater 1:77–82

    Article  CAS  Google Scholar 

  • Aubin JE (1979) Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem 27(1):36–43

    Article  CAS  Google Scholar 

  • Avti PK, Talukdar Y, Sirotkin V et al (2013) Toward single-walled carbon nanotube–gadolinium complex as advanced MRI contrast agents: pharmacodynamics and global genomic response in small animals. J Biomed Mater Res B 101(6):1039–1049

    Article  Google Scholar 

  • Bacon R (1960) Growth, structure, and properties of graphite whiskers. J Appl Phys 31:283–290

    Article  Google Scholar 

  • Bardhan NM, Ghosh D, Belcher AM (2014) Carbon nanotubes as in vivo bacterial probes. Nat Commun 5(1):1

    Article  Google Scholar 

  • Beqa L, Singh AK, Fan Z et al (2011) Chemically attached gold nanoparticle–carbon nanotube hybrids for highly sensitive SERS substrate. Chem Phys Lett 512:237–242

    Article  CAS  Google Scholar 

  • Brawner W (2020) Nuclear imaging. In: Feline diagnostic imaging, pp 37–45

    Google Scholar 

  • Cai SY, Kong JL (2009) Advance in research on carbon nanotubes as diagnostic and therapeutic agents for tumor. Chin J Anal Chem 37(8):1240–1246

    Article  CAS  Google Scholar 

  • Chen RJ, Zhang Y, Wang D et al (2001) Organic functionalization of carbon nanotubes. J Am Chem Soc 123:3838

    Article  CAS  Google Scholar 

  • Chen YS, Zhao Y, Yoon SJ et al (2019) Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat Nanotechnol 14(5):465–472

    Article  CAS  Google Scholar 

  • Cui L, Rao J (2017) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes. Wiley Interdiscip Rev Nanomed 9(2):e1418

    Google Scholar 

  • de la Zerda A, Kim JW, Galanzha EI et al (2011) Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics. Contrast Media Mol Imaging 6(5):346–369

    Article  Google Scholar 

  • Dresselhaus G, Dresselhaus MS, Saito R (1998) Physical properties of carbon nanotubes. World Scientific, London, UK

    Google Scholar 

  • Genady AR, Darryl F et al (2020) 99mTc-functionalized single-walled carbon nanotubes for bone targeting. ACS Appl Nano Mater 3(12):11819–11824

    Google Scholar 

  • Ghosh D, Bagley AF, Na YJ (2014) Noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci 111(38):13948–13953

    Article  CAS  Google Scholar 

  • Gong H, Peng R, Liu Z (2013) Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Deliv Rev 65(15):1951–1963

    Article  CAS  Google Scholar 

  • He X, Htoon H, Doorn SK et al (2018) Carbon nanotubes as emerging quantum-light sources. Nat Mater 17:663–670

    Article  CAS  Google Scholar 

  • Heller DA, Baik S, Eurell TE et al (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17:2793–2799

    Article  CAS  Google Scholar 

  • Hou L, Yang X, Ren J et al (2016) A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Int J Nanomedicine 11:607

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Iizumi Y, Yudasaka M, Kim J et al (2018) Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes. Sci Rep 8:1–6

    Article  CAS  Google Scholar 

  • Jin H, Heller DA, Strano MS (2008) Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 8(6):1577–1585

    Article  Google Scholar 

  • Jorio A, Saito R, Dresselhaus G et al (2004) Determination of nanotubes properties by Raman spectroscopy. Philos Trans R Soc London, Ser A 362:2311–2336

    Google Scholar 

  • Kneipp K, Moskovits M, Kneipp H (2007) Surface-enhanced Raman scattering. Phys Today 60:40

    Article  CAS  Google Scholar 

  • Lacerda L, Soundararajan A, Singh R et al (2008) Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv Mater 20(2):225–230

    Article  CAS  Google Scholar 

  • Lin CW, Bachilo SM, Zheng Y et al (2019) Creating fluorescent quantum defects in carbon nanotubes using hypochlorite and light. Nat Commun 10:1–9

    Article  Google Scholar 

  • Lin HY, Liu QQ, Tian Y et al (2020) Metal-organic coordination polymer-derived carbon nanotubes: preparation and application in detecting small molecules. Polyhedron 10:114504

    Article  Google Scholar 

  • Liu L, Qin H (2017) Photoacoustic molecular imaging with functional nanoparticles. J Innov Opt Health Sci 10(4):1730004

    Article  CAS  Google Scholar 

  • Liu Z, Cai Z, He L et al (2007a) In vivo distribution and highly efficient tumour targeting of carbon nanotube in mice. Nat Nanotechnol 2:47–52

    Article  CAS  Google Scholar 

  • Liu Z, Sun X, Nakayama-Ratchford N et al (2007b) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56

    Article  Google Scholar 

  • Liu Z, Chen K, Davis C et al (2008a) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    Google Scholar 

  • Liu Z, Li X, Tabakman SM et al (2008b) Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc 130(41):13540–13541

    Article  CAS  Google Scholar 

  • Liu Z, Tabakman S, Welsher K et al (2009a) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    Google Scholar 

  • Liu Z, Tabakman SM et al (2009b) Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 4(9):1372–1381

    Article  CAS  Google Scholar 

  • Liu Z, Yang K, Lee ST (2011) Single-walled carbon nanotubes in biomedical imaging. J Mater Chem 21(3):586–598

    Article  CAS  Google Scholar 

  • Ma XD, Hartmann NF, Baldwin JKS et al (2018) Room temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol 10:671–675

    Article  Google Scholar 

  • McDevitt MR, Chattopadhyay D, Jaggi JS et al (2007) PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. Plos One 2(9):e907

    Article  Google Scholar 

  • Monthioux M, Kuznetsov VL (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44(9):1621–1623

    Article  CAS  Google Scholar 

  • Nguyen VP, Oh Y, Ha K et al (2015) Enhancement of high-resolution photoacoustic imaging with indocyanine green-conjugated carbon nanotubes. Jpn J Appl Phys 54(7S1):07HF04

    Article  Google Scholar 

  • Nish A, Hwang JY, Doig J et al (2007) Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotechnol 2(10):640–646

    Article  CAS  Google Scholar 

  • Pérez-Medina C, Teunissen AJ, Kluza E, Mulder WJ, van der Meel R (2020) Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 154–155:123–141

    Google Scholar 

  • Rao AM, Richter E, Bandow S et al (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275:187–191

    Article  CAS  Google Scholar 

  • Reich S, Thomsen C, Maultzsch J (2008) Carbon nanotubes: basic concepts and physical properties. Wiley, Germany, pp 3–30

    Google Scholar 

  • Rosenberg JT, Cisneros BT, Matson M et al (2014) Encapsulated gadolinium and dysprosium ions within ultra-short carbon nanotubes for MR microscopy at 11.75 and 21.1 T. Contrast Media Mol Imaging 9(1):92–99

    Article  CAS  Google Scholar 

  • Sapna K, Tarique M, Asiamma A et al (2020) Early detection of leptospirosis using Anti-LipL32 carbon nanotube immunofluorescence probe. J Biosci Bioeng 130(4):424–430

    Article  CAS  Google Scholar 

  • Servant A, Jacobs I, Bussy C (2016) Gadolinium-functionalised multi-walled carbon nanotubes as a T1 contrast agent for MRI cell labelling and tracking. Carbon 97:126-s

    Article  Google Scholar 

  • Son KH, Hong JH, Lee JW (2016) Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine 11:5163

    Article  CAS  Google Scholar 

  • Takeuchi T, Iizumi Y, Yudasaka M (2019) Characterization and biodistribution analysis of oxygen-doped single-walled carbon nanotubes used as in vivo fluorescence imaging probes. Bioconjug Chem 30(5):1323–1330

    Article  CAS  Google Scholar 

  • Tong L, Liu Y, Dolash BD et al (2012) Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. Nat Nanotechnol 7(1):56–61

    Article  CAS  Google Scholar 

  • Ursu EL, Doroftei F, Peptanariu D et al (2017) DNA-assisted decoration of single-walled carbon nanotubes with gold nanoparticles for applications in surface-enhanced Raman scattering imaging of cells. J Nanopart Res 19:181

    Article  Google Scholar 

  • Vittorio O, Duce SL, Pietrabissa A (2011) Multiwall carbon nanotubes as MRI contrast agents for tracking stem cells. Nanotechnology 22:095706

    Article  Google Scholar 

  • Wang H, Wang J, Deng X et al (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4(8):1019–1024

    Article  CAS  Google Scholar 

  • Wang X, Wang C, Cheng L et al (2012) Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc 134:7414–7422

    Article  CAS  Google Scholar 

  • Wang C, Bao C, Liang S et al (2014) RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer. Nanoscale Res Lett 9(1):1–10

    Article  Google Scholar 

  • Wang S, Lin Q, Chen J (2017) Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis. Carbon 112:53–62

    Article  CAS  Google Scholar 

  • Wang JT, Klippstein R, Martincic M et al (2019) Neutron activated 153Sm sealed in carbon nanocapsules for in vivo imaging and tumor radiotherapy. ACS Nano 14(1):129–141

    Article  Google Scholar 

  • Welsher K, Liu Z, Daranciang D et al (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8:586–590

    Article  CAS  Google Scholar 

  • Welsher K, Sherlock SP, Dai H (2011) Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci 108(22):8943–8948

    Article  CAS  Google Scholar 

  • Xiang L, Yuan Y, Da X et al (2009) Photoacoustic molecular imaging with antibody-functionalized single-walled carbon nanotubes for early diagnosis of tumor. J Biomed Opt 14(2):021008

    Article  Google Scholar 

  • Xiao Y, Gao X, Taratula O et al (2009) Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 9:351

    Article  Google Scholar 

  • Xie L, Wang G, Zhou H et al (2016) Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 103:219–228

    Article  CAS  Google Scholar 

  • Yang CT, Padmanabhan P, Gulyás BZ (2016) Gadolinium (iii) based nanoparticles for T 1-weighted magnetic resonance imaging probes. RSC Adv 6(65):60945–60966

    Article  CAS  Google Scholar 

  • Yeong CH, Cheng MH, Ng KH (2014) Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B 15(10):845–863

    Article  CAS  Google Scholar 

  • Yoichi S, Kazunari M, Shigeo M et al (2004) Chemistry and chemical industry. 57(6):622, 297: 593

    Google Scholar 

  • Yudasaka M, Yomogida Y, Zhang M et al (2017) Near-infrared photoluminescent carbon nanotubes for imaging of brown fat. Sci Rep 7:44760

    Article  CAS  Google Scholar 

  • Zerda AD, Liu Z, Bodapati S et al (2010) Ultra high sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172

    Article  Google Scholar 

  • Zhang S, Yang K, Liu Z (2010) Carbon nanotubes for in vivo cancer nanotechnology. Sci China Chem 53(11):2217–2225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KS and JS are thankful for Senior Research Fellowship and funds from Indian Council of Medical Research (ICMR). JS, BNK, and KSP are grateful to Department of Biotechnology (DBT/PR21309/MED/32/557/2016) and Department of Science and Technology-Science and Engineering Research Board Core Grant (DST-SERB-CRG/2018/000338), Govt. of India for funding, and ABA is indebted to ICMR extramural grant (Leptos/15/2013-ECD-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sapna, K., Sonia, J., Kumara, B.N., Arun, A.B., Prasad, K.S. (2021). Carbon Nanotubes for Bio-imaging Applications. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics