Skip to main content

Near Infrared Spectral Imaging of Carbon Nanotubes for Biomedicine

  • Chapter
  • First Online:
Near Infrared-Emitting Nanoparticles for Biomedical Applications

Abstract

Single-walled carbon nanotubes, as a subset of nanomaterials with near infrared imaging and sensing capabilities, have unique characteristics that are being leveraged for biomedical applications. The combination of a linear scaffold amenable to multiple classes of functionalization and environment-responsive intrinsic bandgap photoluminescence makes SWCNTs powerful building blocks for engineering optical sensors. Whether using these sensors for investigating fundamental biological processes, applying them for drug discovery, developing tools for small-animal pre-clinical research, or refining the material for eventual use in the clinic, there are multiple unmet needs in biomedicine that could successfully be addressed using single-walled carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  Google Scholar 

  2. Pan J, Li F, Choi JH (2017) Single-walled carbon nanotubes as optical probes for bio-sensing and imaging. J Mater Chem B 5:6511–6522

    Article  CAS  Google Scholar 

  3. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:R37–R61

    Article  Google Scholar 

  4. Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185

    Article  Google Scholar 

  5. Won N et al (2012) Imaging depths of near-infrared quantum dots in first and second optical windows. Mol Imaging 11:338–352

    Article  CAS  Google Scholar 

  6. Hemmer E, Benayas A, Légaré F, Vetrone F (2016) Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horiz 1:168–184

    Article  CAS  Google Scholar 

  7. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Article  CAS  Google Scholar 

  8. Li Y (2017) The quarter-century anniversary of carbon nanotube research. ACS Nano 11:1–2

    Article  CAS  Google Scholar 

  9. Farrera C, Torres Andón F, Feliu N (2017) Carbon nanotubes as optical sensors in biomedicine. ACS Nano 11:10637–10643

    Article  CAS  Google Scholar 

  10. Jena PV, Galassi TV, Roxbury D, Heller DA (2017) Review—progress toward applications of carbon nanotube photoluminescence. ECS J Solid State Sci Technol 6:M3075–M3077

    Article  CAS  Google Scholar 

  11. Segawa Y, Ito H, Itami K (2016) Structurally uniform and atomically precise carbon nanostructures. Nat Rev Mater 1:15002

    Article  CAS  Google Scholar 

  12. Dresselhaus MS, Dresselhaus G, Jorio A, Filho AGS, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 19

    Google Scholar 

  13. Bachilo SM (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366

    Article  CAS  Google Scholar 

  14. Ao G, Streit JK, Fagan JA, Zheng M (2016) Differentiating left- and right-handed carbon nanotubes by DNA. J Am Chem Soc 138:16677–16685

    Article  CAS  Google Scholar 

  15. Roxbury D et al (2015) Hyperspectral microscopy of near-infrared fluorescence enables 17-chirality carbon nanotube imaging. Sci Rep 5:14167

    Article  CAS  Google Scholar 

  16. Prasek J et al (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872

    Article  CAS  Google Scholar 

  17. Liu B, Wu F, Gui H, Zheng M, Zhou C (2017) Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11:31–53

    Article  CAS  Google Scholar 

  18. Sanchez-Valencia JR et al (2014) Controlled synthesis of single-chirality carbon nanotubes. Nature 512:61–64

    Article  CAS  Google Scholar 

  19. Yang F et al (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524

    Article  CAS  Google Scholar 

  20. Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295

    Article  CAS  Google Scholar 

  21. Naumov AV et al (2009) Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies. Nano Lett 9:3203–3208

    Article  CAS  Google Scholar 

  22. Nogaj LJ et al (2015) Bright fraction of single-walled carbon nanotubes through correlated fluorescence and topography measurements. J Phys Chem Lett 6:2816–2821

    Article  CAS  Google Scholar 

  23. O’Connell MJ (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Article  Google Scholar 

  24. Wang F (2005) The optical resonances in carbon nanotubes arise from excitons. Science 308:838–841

    Article  CAS  Google Scholar 

  25. Ma Y-Z, Valkunas L, Bachilo SM, Fleming GR (2005) Exciton binding energy in semiconducting single-walled carbon nanotubes. J Phys Chem B 109:15671–15674

    Article  CAS  Google Scholar 

  26. Amori AR, Hou Z, Krauss TD (2018) Excitons in single-walled carbon nanotubes and their dynamics. Annu Rev Phys Chem 69:81–99

    Article  CAS  Google Scholar 

  27. Hagen A, Hertel T (2003) Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Lett 3:383–388

    Article  CAS  Google Scholar 

  28. Weisman RB, Bachilo SM (2003) Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett 3:1235–1238

    Article  CAS  Google Scholar 

  29. Zheng M (2018) Structure-defined DNA-carbon nanotube hybrids and their applications. ECS Trans 85:511–517

    Article  CAS  Google Scholar 

  30. Zheng M (2017) Sorting carbon nanotubes. Top Curr Chem 375:13

    Article  CAS  Google Scholar 

  31. Green AA, Hersam MC (2011) Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv Mater 23:2185–2190

    Article  CAS  Google Scholar 

  32. Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309

    Article  CAS  Google Scholar 

  33. Yomogida Y et al (2016) Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun 7:12056

    Article  CAS  Google Scholar 

  34. Fagan JA et al (2014) Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv Mater 26:2800–2804

    Article  CAS  Google Scholar 

  35. Subbaiyan NK et al (2015) Bench-top aqueous two-phase extraction of isolated individual single-walled carbon nanotubes. Nano Res 8:1755–1769

    Article  CAS  Google Scholar 

  36. Tu X, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253

    Article  CAS  Google Scholar 

  37. Ao G, Khripin CY, Zheng M (2014) DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems. J Am Chem Soc 136:10383–10392

    Article  CAS  Google Scholar 

  38. Streit JK, Fagan JA, Zheng M (2017) A low energy route to DNA-wrapped carbon nanotubes via replacement of bile salt surfactants. Anal Chem 89:10496–10503

    Article  CAS  Google Scholar 

  39. Ong L-C, Chung FF-L, Tan Y-F, Leong C-O (2016) Toxicity of single-walled carbon nanotubes. Arch Toxicol 90:103–118

    Article  CAS  Google Scholar 

  40. Ema M, Gamo M, Honda K (2016) A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol 74:42–63

    Article  CAS  Google Scholar 

  41. Pan H, Lin Y-J, Li M-W, Chuang H-N, Chou C-C (2011) Aquatic toxicity assessment of single-walled carbon nanotubes using zebrafish embryos. J Phys Conf Ser 304:012026

    Article  CAS  Google Scholar 

  42. Jin S, Wijesekara P, Boyer PD, Dahl KN, Islam MF (2017) Length-dependent intracellular bundling of single-walled carbon nanotubes influences retention. J Mater Chem B 5:6657–6665

    Article  CAS  Google Scholar 

  43. Wu L et al (2014) Tuning cell autophagy by diversifying carbon nanotube surface chemistry. ACS Nano 8:2087–2099

    Article  CAS  Google Scholar 

  44. Elgrabli D et al (2015) Carbon nanotube degradation in macrophages: live nanoscale monitoring and understanding of biological pathway. ACS Nano 9:10113–10124

    Article  CAS  Google Scholar 

  45. Andersen AJ et al (2013) Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano 7:1108–1119

    Article  CAS  Google Scholar 

  46. Ge C et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 108:16968–16973

    Article  Google Scholar 

  47. Singh AV et al (2014) Carbon nanotube-induced loss of multicellular chirality on micropatterned substrate is mediated by oxidative stress. ACS Nano 8:2196–2205

    Article  CAS  Google Scholar 

  48. Bussy C et al (2015) Microglia determine brain region-specific neurotoxic responses to chemically functionalized carbon nanotubes. ACS Nano 9:7815–7830

    Article  CAS  Google Scholar 

  49. Gao Z, Varela JA, Groc L, Lounis B, Cognet L (2016) Toward the suppression of cellular toxicity from single-walled carbon nanotubes. Biomater Sci 4:230–244

    Article  CAS  Google Scholar 

  50. Zhu W et al (2016) Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proc Natl Acad Sci 113:12374–12379

    Article  CAS  Google Scholar 

  51. Alidori S et al (2017) Carbon nanotubes exhibit fibrillar pharmacology in primates. PLoS One 12:e0183902

    Article  CAS  Google Scholar 

  52. Wang X et al (2016) Toxicological profiling of highly purified metallic and semiconducting single-walled carbon nanotubes in the rodent lung and E. coli. ACS Nano 10:6008–6019

    Article  CAS  Google Scholar 

  53. Wang Y, Bahng JH, Che Q, Han J, Kotov NA (2015) Anomalously fast diffusion of targeted carbon nanotubes in cellular spheroids. ACS Nano 9:8231–8238

    Article  CAS  Google Scholar 

  54. Jena PV et al (2016) Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids. Carbon 97:99–109

    Article  CAS  Google Scholar 

  55. Godin AG et al (2017) Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat Nanotechnol 12:238–243

    Article  CAS  Google Scholar 

  56. Bhirde AA et al (2014) Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance. ACS Nano 8:4177–4189

    Article  CAS  Google Scholar 

  57. Alidori S et al (2016) Deconvoluting hepatic processing of carbon nanotubes. Nat Commun 7:12343

    Article  CAS  Google Scholar 

  58. Ruggiero A et al (2010) Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci 107:12369–12374

    Article  Google Scholar 

  59. Demirer GS et al (2019) High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol

    Google Scholar 

  60. Kwak S-Y et al (2019) Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol

    Google Scholar 

  61. Pansare VJ, Hejazi S, Faenza WJ, Prud’homme RK (2012) Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem Mater 24:812–827

    Article  CAS  Google Scholar 

  62. Ju S-Y, Kopcha WP, Papadimitrakopoulos F (2009) Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 323:1319–1323

    Article  CAS  Google Scholar 

  63. Lefebvre J, Austing DG, Bond J, Finnie P (2006) Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett 6:1603–1608

    Article  CAS  Google Scholar 

  64. Akizuki N, Aota S, Mouri S, Matsuda K, Miyauchi Y (2015) Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat Commun 6:8920

    Article  CAS  Google Scholar 

  65. Danné N et al (2018) Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications. ACS Photonics 5:359–364

    Article  CAS  Google Scholar 

  66. Iverson NM et al (2013) In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8:873–880

    Article  CAS  Google Scholar 

  67. Boghossian AA et al (2011) Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem 4:848–863

    Article  CAS  Google Scholar 

  68. Kwon H et al (2016) Molecularly tunable fluorescent quantum defects. J Am Chem Soc 138:6878–6885

    Article  CAS  Google Scholar 

  69. Piao Y et al (2013) Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat Chem 5:840–845

    Article  CAS  Google Scholar 

  70. Kim M et al (2018) Mapping structure-property relationships of organic color centers. Chem 4:2180–2191

    Article  CAS  Google Scholar 

  71. Hirana Y, Tanaka Y, Niidome Y, Nakashima N (2010) Strong micro-dielectric environment effect on the band gaps of (n,m) single-walled carbon nanotubes. J Am Chem Soc 132:13072–13077

    Article  CAS  Google Scholar 

  72. Larsen BA et al (2012) Effect of solvent polarity and electrophilicity on quantum yields and solvatochromic shifts of single-walled carbon nanotube photoluminescence. J Am Chem Soc 134:12485–12491

    Article  CAS  Google Scholar 

  73. Walsh AG et al (2008) Scaling of exciton binding energy with external dielectric function in carbon nanotubes. Phys E Low-Dimens Syst Nanostruct 40:2375–2379

    Article  CAS  Google Scholar 

  74. Choi JH, Strano MS (2007) Solvatochromism in single-walled carbon nanotubes. Appl Phys Lett 90:223114

    Article  CAS  Google Scholar 

  75. Gao J, Gomulya W, Loi MA (2013) Effect of medium dielectric constant on the physical properties of single-walled carbon nanotubes. Chem Phys 413:35–38

    Article  CAS  Google Scholar 

  76. Heller DA (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311:508–511

    Article  CAS  Google Scholar 

  77. Ahn J-H et al (2011) Label-free, single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis. Nano Lett 11:2743–2752

    Article  CAS  Google Scholar 

  78. Jin H et al (2010) Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat Nanotechnol 5:302–309

    Article  CAS  Google Scholar 

  79. Landry MP et al (2017) Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat Nanotechnol 12:368–377

    Article  CAS  Google Scholar 

  80. Wong MH et al (2017) Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat Mater 16:264–272

    Article  CAS  Google Scholar 

  81. Kim J-H et al (2009) The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nat Chem 1:473–481

    Article  CAS  Google Scholar 

  82. Zhang J et al (2013) Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat Nanotechnol 8:959–968

    Article  CAS  Google Scholar 

  83. Cambré S et al (2012) Luminescence properties of individual empty and water-filled single-walled carbon nanotubes. ACS Nano 6:2649–2655

    Article  CAS  Google Scholar 

  84. Cambré S et al (2015) Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response. Nat Nanotechnol 10:248–252

    Article  CAS  Google Scholar 

  85. Campo J et al (2016) Enhancing single-wall carbon nanotube properties through controlled endohedral filling. Nanoscale Horiz 1:317–324

    Article  CAS  Google Scholar 

  86. Almadori Y et al (2014) Chromophore ordering by confinement into carbon nanotubes. J Phys Chem C 118:19462–19468

    Article  CAS  Google Scholar 

  87. Harvey JD et al (2017) A carbon nanotube reporter of microRNA hybridization events in vivo. Nat Biomed Eng 1:0041

    Article  CAS  Google Scholar 

  88. Jena PV et al (2017) A carbon nanotube optical reporter maps endolysosomal lipid flux. ACS Nano 11:10689–10703

    Article  CAS  Google Scholar 

  89. Yoshimura SH et al (2012) Site-specific attachment of a protein to a carbon nanotube end without loss of protein function. Bioconjug Chem 23:1488–1493

    Article  CAS  Google Scholar 

  90. Diao S et al (2015) Biological imaging without autofluorescence in the second near-infrared region. Nano Res 8:3027–3034

    Article  CAS  Google Scholar 

  91. Reineck P, Gibson BC (2017) Near-infrared fluorescent nanomaterials for bioimaging and sensing. Adv Opt Mater 5:1600446

    Article  CAS  Google Scholar 

  92. Antaris AL et al (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15:235–242

    Article  CAS  Google Scholar 

  93. Antaris AL et al (2017) A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun 8:15269

    Article  CAS  Google Scholar 

  94. Yang Q et al (2017) Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv Mater 29:1605497

    Article  CAS  Google Scholar 

  95. Shcherbakova DM et al (2016) Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat Commun 7:12405

    Article  CAS  Google Scholar 

  96. Carr JA et al (2018) Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci 115:4465–4470

    Article  CAS  Google Scholar 

  97. Zhu S et al (2017) Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci 114:962–967

    Article  CAS  Google Scholar 

  98. Bruns OT et al (2017) Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng 1:0056

    Article  CAS  Google Scholar 

  99. Cassette E et al (2013) Design of new quantum dot materials for deep tissue infrared imaging. Adv Drug Deliv Rev 65:719–731

    Article  CAS  Google Scholar 

  100. Dang X et al (2016) Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc Natl Acad Sci 113:5179–5184

    Article  CAS  Google Scholar 

  101. Danné N et al (2018) Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared. ACS Nano 12:6059–6065

    Article  CAS  Google Scholar 

  102. Bhattacharjee S (2016) DLS and zeta potential – what they are and what they are not? J Control Release 235:337–351

    Article  CAS  Google Scholar 

  103. Zhang D, Yang J, Li M, Li Y (2016) (n,m) Assignments of metallic single-walled carbon nanotubes by Raman spectroscopy: the importance of electronic Raman scattering. ACS Nano 10:10789–10797

    Article  CAS  Google Scholar 

  104. Piao Y et al (2016) Intensity ratio of resonant Raman modes for (n,m) enriched semiconducting carbon nanotubes. ACS Nano 10:5252–5259

    Article  CAS  Google Scholar 

  105. Cherukuri TK, Tsyboulski DA, Weisman RB (2012) Length- and defect-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. ACS Nano 6:843–850

    Article  CAS  Google Scholar 

  106. Mouri S, Miyauchi Y, Matsuda K (2012) Dispersion-process effects on the photoluminescence quantum yields of single-walled carbon nanotubes dispersed using aromatic polymers. J Phys Chem C 116:10282–10286

    Article  CAS  Google Scholar 

  107. Khripin CY, Tu X, Howarter J, Fagan J, Zheng M (2012) Concentration measurement of length-fractionated colloidal single-wall carbon nanotubes. Anal Chem 84:8733–8739

    Article  CAS  Google Scholar 

  108. Crochet J, Clemens M, Hertel T (2007) Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J Am Chem Soc 129:8058–8059

    Article  CAS  Google Scholar 

  109. Fagan JA et al (2007) Length-dependent optical effects in single-wall carbon nanotubes. J Am Chem Soc 129:10607–10612

    Article  CAS  Google Scholar 

  110. Rajan A, Strano MS, Heller DA, Hertel T, Schulten K (2008) Length-dependent optical effects in single walled carbon nanotubes. J Phys Chem B 112:6211–6213

    Article  CAS  Google Scholar 

  111. Naumov AV, Tsyboulski DA, Bachilo SM, Weisman RB (2013) Length-dependent optical properties of single-walled carbon nanotube samples. Chem Phys 422:255–263

    Article  CAS  Google Scholar 

  112. Silvera Batista CA, Zheng M, Khripin CY, Tu X, Fagan JA (2014) Rod hydrodynamics and length distributions of single-wall carbon nanotubes using analytical ultracentrifugation. Langmuir 30:4895–4904

    Article  CAS  Google Scholar 

  113. Zhao Q, Zhang J (2014) Characterizing the chiral index of a single-walled carbon nanotube. Small 10:4586–4605

    Article  CAS  Google Scholar 

  114. Jena PV, Safaee MM, Heller DA, Roxbury D (2017) DNA–carbon nanotube complexation affinity and photoluminescence modulation are independent. ACS Appl Mater Interfaces 9:21397–21405

    Article  CAS  Google Scholar 

  115. Lefebvre J (2016) Real time hyperspectroscopy for dynamical study of carbon nanotubes. ACS Nano 10:9602–9607

    Article  CAS  Google Scholar 

  116. Sanchez SR, Bachilo SM, Kadria-Vili Y, Lin C-W, Weisman RB (2016) (n,m)-specific absorption cross sections of single-walled carbon nanotubes measured by variance spectroscopy. Nano Lett 16:6903–6909

    Article  CAS  Google Scholar 

  117. Liu K et al (2014) Systematic determination of absolute absorption cross-section of individual carbon nanotubes. Proc Natl Acad Sci 111:7564–7569

    Article  CAS  Google Scholar 

  118. Streit JK, Bachilo SM, Ghosh S, Lin C-W, Weisman RB (2014) Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes. Nano Lett 14:1530–1536

    Article  CAS  Google Scholar 

  119. Galassi TV, Jena PV, Roxbury D, Heller DA (2017) Single nanotube spectral imaging to determine molar concentrations of isolated carbon nanotube species. Anal Chem 89:1073–1077

    Article  CAS  Google Scholar 

  120. Schöppler F, Rühl N, Hertel T (2013) Photoluminescence microscopy and spectroscopy of individualized and aggregated single-wall carbon nanotubes. Chem Phys 413:112–115

    Article  CAS  Google Scholar 

  121. Naumov AV, Ghosh S, Tsyboulski DA, Bachilo SM, Weisman RB (2011) Analyzing absorption backgrounds in single-walled carbon nanotube spectra. ACS Nano 5:1639–1648

    Article  CAS  Google Scholar 

  122. Roxbury D, Jena PV, Shamay Y, Horoszko CP, Heller DA (2016) Cell membrane proteins modulate the carbon nanotube optical Bandgap via surface charge accumulation. ACS Nano 10:499–506

    Article  CAS  Google Scholar 

  123. Heller DA et al (2011) Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics. Proc Natl Acad Sci 108:8544–8549

    Article  Google Scholar 

  124. Galassi TV et al (2018) An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo. Sci Transl Med 10:eaar2680

    Article  CAS  Google Scholar 

  125. Lerner JM, Gat N, Wachman E (2010) Approaches to spectral imaging hardware. Curr Protoc Cytom 53:12.20.1–12.20.40

    Article  Google Scholar 

  126. Adão T et al (2017) Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 9:1110

    Article  Google Scholar 

  127. Heller DA et al (2009) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4:114–120

    Article  CAS  Google Scholar 

  128. Budhathoki-Uprety J, Langenbacher RE, Jena PV, Roxbury D, Heller DA (2017) A carbon nanotube optical sensor reports nuclear entry via a noncanonical pathway. ACS Nano 11:3875–3882

    Article  CAS  Google Scholar 

  129. Lin C-W et al (2017) In vivo optical detection and spectral triangulation of carbon nanotubes. ACS Appl Mater Interfaces 9:41680–41690

    Article  CAS  Google Scholar 

  130. Streit JK, Bachilo SM, Weisman RB (2013) Chromatic aberration short-wave infrared spectroscopy: nanoparticle spectra without a spectrometer. Anal Chem 85:1337–1341

    Article  CAS  Google Scholar 

  131. Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol Vac Surf Films 19:1800–1805

    Article  CAS  Google Scholar 

  132. Godwin MA et al (2018) An efficient method to completely remove catalyst particles from HiPCO single walled carbon nanotubes. J Nano Res 53:64–75

    Article  Google Scholar 

  133. Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 317:497–503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, P.V., Cupo, C., Heller, D.A. (2020). Near Infrared Spectral Imaging of Carbon Nanotubes for Biomedicine. In: Benayas, A., Hemmer, E., Hong, G., Jaque, D. (eds) Near Infrared-Emitting Nanoparticles for Biomedical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-32036-2_6

Download citation

Publish with us

Policies and ethics