Skip to main content
Log in

Targeting cytokine expression in glial cells by cellular delivery of an NF-κB decoy

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Inhibition of nuclear factor (NF)-κB has emerged as an important strategy for design of anti-inflammatory therapies. In neurodegenerative disorders like Alzheimer’s disease, inflammatory reactions mediated by glial cells are believed to promote disease progression. Here, we report that uptake of a double-stranded oligonucleotide NF-κB decoy in rat primary glial cells is clearly facilitated by noncovalent binding to a cell-penetrating peptide, transportan 10, via a complementary peptide nucleic acid (PNA) sequence. Fluorescently labeled oligonucleotide decoy was detected in the cells within 1 h only when cells were incubated with the decoy in the presence of cell-penetrating peptide. Cellular delivery of the decoy also inhibited effects induced by a neurotoxic fragment of the Alzheimer β amyloid peptide in the presence of the inflammatory cytokine interleukin (IL) 1β. Pretreatment of the cells with the complex formed by the decoy and the cell-penetrating peptide-PNA resulted in 80% and 50% inhibition of the NF-κB binding activity and IL-6 mRNA expression, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aisen P. S. (2002) The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol. 1, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Akama K. T., Albanese C., Pestell R. G., and Van Eldik L. J. (1998) Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism. Proc. Natl. Acad. Sci. U. S. A. 95, 5795–5800.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama H., Barger S., Barnum S., et al. (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421.

    Article  PubMed  CAS  Google Scholar 

  • Araujo D. M. and Cotman C. W. (1992) Beta-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res. 569, 141–145.

    Article  PubMed  CAS  Google Scholar 

  • Bales K. R., Du Y., Dodel R. C., Yan G. M., Hamilton-Byrd E., and Paul S. M. (1998) The NF-κB/Rel family of proteins mediates Aβ-induced neurotoxicity and glial activation. Brain Res. Mol. Brain Res. 57, 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Barger S. W., Horster D., Furukawa K., Goodman Y., Krieglstein J., and Mattson M. P. (1995) Tumor necrosis factors α and β protect neurons against amyloid β peptide toxicity: evidence for involvement of a κB-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl. Acad. Sci. U. S. A. 92, 9328–9332.

    Article  PubMed  CAS  Google Scholar 

  • Beard C. M., Kokmen E., Sigler C., Smith G. E., Petterson T., and O’Brien P. C. (1996) Cause of death in Alzheimer’s disease. Ann. Epidemiol. 6, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Breitner J. C., Welsh K. A., Helms M. J., et al. (1995) Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol. Aging 16, 523–530.

    Article  PubMed  CAS  Google Scholar 

  • Campbell I. L., Abraham C. R., Masliah E., et al. (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl. Acad. Sci. U. S. A. 90, 10,061–10,065.

    CAS  Google Scholar 

  • Combs C. K., Karlo J. C., Kao S. C., and Landreth G. E. (2001) β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21, 1179–1188.

    PubMed  CAS  Google Scholar 

  • D’Acquisto F., May M. J., and Ghosh S. (2002) Inhibition of nuclear factor kappa B (NF-κB): An emerging theme in anti-inflammatory therapies. Mol. Interv. 2, 22–35.

    Article  PubMed  CAS  Google Scholar 

  • Del Bo R., Angeretti N., Lucca E., De Simoni M. G., and Forloni G. (1995) Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and β-amyloid production in cultures. Neurosci. Lett. 188, 70–74.

    Article  PubMed  CAS  Google Scholar 

  • Drin G., Cottin S., Blanc E., Rees A. R., and Temsamani J. (2003) Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem. 278, 31,192–31,201.

    Article  CAS  Google Scholar 

  • Eriksson G., Peterson A., Iverfeldt K., and Walum E. (1995) Sodium-dependent glutamate uptake as an activator of oxidative metabolism in primary astrocyte cultures from newborn rat. Glia 15, 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Fisher L., Soomets U., Cortes Toro V., et al. (2004) Cellular delivery of a double-stranded oligonucleotide NFκB decoy by hybridization to complementary PNA linked to a cell-penetrating peptide. Gene Ther. 11, 1264–1272.

    Article  PubMed  CAS  Google Scholar 

  • Forloni G., Demicheli F., Giorgi S., Bendotti C., and Angeretti N. (1992) Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Brain Res. Mol. Brain Res. 16, 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Fujihara S. M., Cleaveland J-S., Grosmmaire L. S., et al. (2000) A D-amino acid peptide inhibitor of NF-κB nuclear localization is efficacious in models of inflammatory disease. J. Immunol. 165, 1004–1012.

    PubMed  CAS  Google Scholar 

  • Gadient R. A. and Otten U. H. (1997) Interleukin-6 (IL-6)—a molecule with both beneficial and destructive potentials. Prog. Neurobiol. 52, 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Goldgaber D., Harris H. W., Hla T., et al. (1989) Interleukin 1 regulates synthesis of amyloid β-protein precursor mRNA in human endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 86, 7606–7610.

    Article  PubMed  CAS  Google Scholar 

  • Grilli M., Ribola M., Alberici A., Valerio A., Memo M., and Spano P. (1995) Identification and characterization of a κB/Rel binding site in the regulatory region of the amyloid precursor protein gene. J. Biol. Chem. 270, 26,774–26,777.

    CAS  Google Scholar 

  • Guo Q., Robinson N., and Mattson M. P. (1998) Secreted β-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-κB and stabilization of calcium homeostasis. J. Biol. Chem. 273, 12,341–12,351.

    CAS  Google Scholar 

  • Holmlund L., Cortes Toro V., and Iverfeldt K. (2002) Additive effects of amyloid β fragment and interleukin-1β on interleukin-6 secretion in rat primary glial cultures. Int. J. Mol. Med. 10, 245–250.

    PubMed  CAS  Google Scholar 

  • Huell M., Strauss S., Volk B., Berger M., and Bauer J. (1995) Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer’s disease patients. Acta Neuropathol. (Berl) 89, 544–551.

    Article  CAS  Google Scholar 

  • Hull M., Fiebich B. L., Lieb K., et al. (1996) Interleukin-6-associated inflammatory processes in Alzheimer’s disease: new therapeutic options. Neurobiol. Aging 17, 795–800.

    PubMed  CAS  Google Scholar 

  • Hungness E. S., Luo G. J., Pritts T. A., et al. (2002) Transcription factors C/EBP-β and -δ regulate IL-6 production in IL-1β-stimulated human enterocytes. J. Cell. Physiol. 192, 64–70.

    Article  PubMed  CAS  Google Scholar 

  • in t’ Veld B. A., Ruitenberg A., Hofman A., et al. (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N. Engl. J. Med. 345, 1515–1521.

    Article  PubMed  CAS  Google Scholar 

  • Kaltschmidt B., Uherek M., Volk B., Baeuerle P. A., and Kaltschmidt C. (1997) Transcription factor NF-κB is activated in primary neurons by amyloid β peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 94, 2642–2647.

    Article  PubMed  CAS  Google Scholar 

  • Khaled A. R., Butfiloski E. J., Sobel E. S., and Schiffenbauer J. (1998) Use of phosphorothioate-modified oligodeoxynucleotides to inhibit NF-κB expression and lymphocyte function. Clin. Immunol. Immunopathol. 86, 170–179.

    Article  PubMed  CAS  Google Scholar 

  • Libermann T. A. and Baltimore D. (1990) Activation of interleukin-6 gene expression through the NF-κB transcription factor. Mol. Cell Biol. 10, 2327–2334.

    Google Scholar 

  • Lin Y. Z., Zao S. Y., Veach R. A., Togerson T. R., and Hawiger J. (1995) Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. 270, 14,255–14,258.

    CAS  Google Scholar 

  • Lindgren M. E., Hällbrink M. M., Elmquist A. M., and Langel Ü. (2004) Passage of cell-penetrating peptides across a human epithelial cell layer in vitro. Biochem. J. 377, 69–76.

    Article  PubMed  CAS  Google Scholar 

  • May M. J., D’Acquisto F., Madge L. A., Glockner J., Pober J. S., and Ghosh S. (2000) Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science 289, 1550–1554.

    Article  PubMed  CAS  Google Scholar 

  • Meda L., Cassatella M. A., Szendrei G. I., et al. (1995). Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374, 647–750.

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa K., Mori A., Yamamoto K., and Okudaira H. (1998) Transcriptional roles of CCAAT/enhancer binding protein-β, nuclear factor-κB, and C-promoter binding factor 1 in interleukin (IL)-1β-induced IL-6 synthesis by human rheumatoid fibroblast-like synoviocytes. J. Biol. Chem. 273, 7620–7627.

    Article  PubMed  CAS  Google Scholar 

  • Moerman A. M., Mao X., Lucas M. M., and Barger S. W. (1999) Characterization of a neuronal κB-binding factor distinct from NF-κB. Brain Res. Mol. Brain Res. 67, 303–315.

    Article  PubMed  CAS  Google Scholar 

  • Mrak R. E., Sheng J. G., and Griffin W. S. (1995) Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum. Pathol. 26, 816–823.

    Article  PubMed  CAS  Google Scholar 

  • Nekhotiaeva N., Elmquist A., Rajarao G. K., Hällbrink M., Langel Ü., and Good L. (2004) Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASE B J. 18, 394–396.

    CAS  Google Scholar 

  • O’Neill L. A. and Kaltschmidt C. (1997) NF-κB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 20, 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Padari K., Säälik P., Hansen M., et al. (2005) Cell transduction pathways of transportans. Bioconjugate Chem. 16, 1399–1410.

    Article  CAS  Google Scholar 

  • Perry V. H., Newman T. A., and Cunningham C. (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat. Rev. Neurosci. 4, 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Quintanilla R. A., Orellana D. I., Gonzalez-Billault C., and Maccioni R. B. (2004) Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp. Cell Res. 295, 245–257.

    Article  PubMed  CAS  Google Scholar 

  • Richard J. P., Melikov K., Vives E., et al. (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585–590.

    Article  PubMed  CAS  Google Scholar 

  • Rogers J., Kirby L. C., Hempelman S. R., et al. (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43, 1609–1611.

    PubMed  CAS  Google Scholar 

  • Saar K., Lindgren M., Hansen M., et al. (2005) Cell-penetrating peptides: A comparative membrane toxicity study. Anal. Biochem. 345, 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Schmedtje J. F., Jr., Ji Y. S., Liu W. L., DuBois R. N., and Runge M. S. (1997) Hypoxia induces cyclooxygenase-2 via the NF-κB p65 transcription factor in human vascular endothelial cells. J. Biol. Chem. 272, 601–608.

    Article  PubMed  CAS  Google Scholar 

  • Sparacio S. M., Zhang Y., Vilcek J., and Benveniste E. N. (1992) Cytokine regulation of interleukin-6 gene expression in astrocytes involves activation of an NF-κB-like nuclear protein. J. Neuroimmunol. 39, 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Tomita N., Morishita R., Tomita S., et al. (1998) Transcription factor decoy for nuclear factor-κB inhibits tumor necrosis factor-α-induced expression of inter leukin-6 and intracellular adhesion molecule-1 in endothelial cells. J. Hypertens. 16, 993–1000.

    Article  PubMed  Google Scholar 

  • Tomita N., Morishita R., Tomita S., et al. (2000) Transcription factor decoy for NFκB inhibits TNF-α-induced cytokine and adhesion molecule expression in vivo. Gene Ther. 7, 1326–1332.

    Article  PubMed  CAS  Google Scholar 

  • Zorko M. and Langel Ü. (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev. 57, 529–545.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Iverfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, L., Samuelsson, M., Jiang, Y. et al. Targeting cytokine expression in glial cells by cellular delivery of an NF-κB decoy. J Mol Neurosci 31, 209–219 (2007). https://doi.org/10.1385/JMN:31:03:209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:31:03:209

Index Entries

Navigation