Skip to main content
Log in

The Na,K-ATPase receptor complex

Ist Organization and Membership

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

A major difference between the Na,K-ATPase ion pump and other P-type ATPases is its ability to bind cardiotonic steroids such as ouabain. Na,K-ATPase also interacts with many membrane and cytosolic proteins. In addition to their role in Na,K-ATPase regulation, it became apparent that some of the newly identified interactions are capable of organizing the Na,K-ATPase into various signaling complexes. This new function confers a ligand-like effect to cardiotonic steroids on cellular signal transduction. This article reviews these new developments and provides a comparison of Na,K-ATPase-mediated signal transduction with other receptors and ion transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgartner, M., Patel, H., and Barber, D. L. (2004) Na(+)/H(+) exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Am. J. Physiol. Cell Physiol. 287, C844-C850.

    PubMed  CAS  Google Scholar 

  2. Wu, K. L., Khan, S., Lakhe-Reddy, S., Jarad, G., Mukherjee, A., Obejero-Paz, C. A., Konieczkowski, M., Sedor, J. R., and Schelling, J. R. (2004) The NHE1 Na+/H+ exchanger recruits ezrin/radixin/moesin proteins to regulate Akt-dependent cell survival. J. Biol. Chem. 279, 26280–26286.

    PubMed  CAS  Google Scholar 

  3. Wang, T., Jiao, Y., and Montell, C. (2005) Dissecting independent channel and scaffolding roles of the Drosophila transient receptor protential channel. J. Cell Biol. 171, 685–694.

    PubMed  CAS  Google Scholar 

  4. Delmas, P. (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch. 451, 264–276.

    PubMed  CAS  Google Scholar 

  5. Bruce, L. J., Beckmann, R., Ribeiro, M. L., Peters, L. L., Chasis, J. A., Delaunay, J., Mohandas, N., Anstee, D. J., and Tanner, M. J. (2003) A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood 101, 4180–4188.

    PubMed  CAS  Google Scholar 

  6. Patterson, R. L., Boehning, D., and Snyder, S. H. (2004) Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu. Rev. Biochem. 73, 437–465.

    PubMed  CAS  Google Scholar 

  7. Lingrel, J. B., and Kuntzweiler, T. (1994) Na+,K(+)-ATPase. J. Biol. Chem. 269, 19659–19662.

    PubMed  CAS  Google Scholar 

  8. Kaplan, J. H. (2002) Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 71, 511–535.

    PubMed  CAS  Google Scholar 

  9. Albers, R. (1967) Biochemical aspects of active transport. Annu. Rev. Biochem. 36, 727–756.

    CAS  Google Scholar 

  10. Post, R. L., Hegyvary, C., and Kume, S. (1972) Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatsase. J. Biol. Chem. 247, 6530–6540.

    PubMed  CAS  Google Scholar 

  11. Lutsenko, S., and Kaplan, J. H. (1995) Organization of P-type ATPaes: significance of structural diversity. Biochemistry 34, 15607–15613.

    PubMed  CAS  Google Scholar 

  12. Sweadner, K. J., and Donnet, C. (2001) Structural similarities of Na,K-ATPase and SERCA, the Ca(2+)-ATPase of the sarcoplasmic reticulum. Biochem. J. 356, 685–704.

    PubMed  CAS  Google Scholar 

  13. Kuhlbrandt, W., (2004) Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell. Biol. 5, 282–295.

    PubMed  Google Scholar 

  14. Horisberger, J.D. (2004) Recent insights into the structure and mechanism of the sodium pump. Physiology 19, 377–87.

    PubMed  CAS  Google Scholar 

  15. Martin, K. W. (2005) Structure-function relationships in the Na+,K+-pump. Semin Nephrol. 25, 282–291.

    PubMed  CAS  Google Scholar 

  16. Jorgensen, P. L., Hakansson, K. O., and Karlish, S. J. D. (2003) Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu. Rev. Physiol. 65, 817–849.

    PubMed  CAS  Google Scholar 

  17. Rice, W. J., Young, H. S., Martin, D. W., Sachs, J. R., and Stokes, D. L. (2000) Structure of Na+, K+-ATPase at 11-A resolution: comparison with Ca2+-ATPase in E1 and E2 states. Biophys. J. 80, 2187–2197.

    Google Scholar 

  18. Sweadner, K. J., and Rael, E. (2000) The FXYD gene family of small ion trasport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68, 41–56.

    PubMed  CAS  Google Scholar 

  19. Crambert, G., and Greering, K. (2003) FXYD proteins: new tissue-specific regulators of the ubiquitous Na+,K+-ATPase. Sci. STKE 166, RE1.

    Google Scholar 

  20. Blanco, G., and Mercer, R. W. (1998) Isozymes of the NaK-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol. 275, F633-F650.

    PubMed  CAS  Google Scholar 

  21. Pressley, T.A., Duran, M. J., and Pierre, S. V. (2005) Regions conferring isoform-specific function in the catalytic subunit of the Na,K-pump. Front. Biosci. 10, 2018–2026.

    PubMed  CAS  Google Scholar 

  22. Blanco, G. (2005) Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin. Nephrol. 25, 292–303.

    PubMed  CAS  Google Scholar 

  23. Lingrel, J. B., Arguello, J. M., Van Huysse, J., and Kuntzweiler, T. A. (1997) Cation and cardiac glycoside binding sites of the Na,K-ATPase. Ann. N Y Acad. Sci. 834, 194–206.

    PubMed  CAS  Google Scholar 

  24. Keenan, S. M., DeLisle, R. K., Welsh, W. J., Paula, S., and Ball, W. J., Jr. (2005) Elucidation of the Na+, K+-ATPase digitalis binding site. J. Mol. Graph. Model 23, 465–475.

    PubMed  CAS  Google Scholar 

  25. Liu, L. and Askari, A. (2005) Digitalis-induced growth arrest in human breast cancer cells: on the importance and mechanism of amplification of digitalis signal through Na/K-ATPase. J. Gen. Physiol. 126, 71a (abstract).

    Google Scholar 

  26. Paula, S., Tabet, M. R., and Ball, W. J., Jr. (2005) Interactions between cardiac glycosides and sodium/potassium-ATPase: three-dimensional structure-activity rekationship models for ligand binding to the E2-Pi form of the enzyme versus activity inhibition. Biochemistry 44, 498–510.

    PubMed  CAS  Google Scholar 

  27. Qiu, L. Y., Krieger, E., Schaftenaar, G., Swarts, H. G., Willems, P. H., De Pont, J. J., and Koenderink, J. B. (2005) Reconstruction of the complete ouabain-binding pocket of Na,K-ATPase in gastric H,K-ATPase by substitution of only seven amino acids. J. Biol. Chem. 280, 32349–32355.

    PubMed  CAS  Google Scholar 

  28. Krenn, L. and Kopp, B. (1998) Bufadienolides from animal and plant sources. Phytochemistry 48, 1–29.

    PubMed  CAS  Google Scholar 

  29. Yeh, J. Y., Huang, W. J., Kan, S. F., and Wang, P. S. (2001) Inhibitory effects of digitalis on the proliferation of androgen dependent and independent prostate cancer cells. J. Urol. 166, 1937–1942.

    PubMed  CAS  Google Scholar 

  30. Yeh, J. Y., Huang, W. J., Kan, S. F., and Wang, P. S. (2003) Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells. Prostate 54, 112–124.

    PubMed  CAS  Google Scholar 

  31. Weidemann, H. (2005) Na/K-ATPase, endogenous digitalis like compounds and cancer development—a hypothesis. Front. Biosci. 10, 2165–2176.

    PubMed  CAS  Google Scholar 

  32. Chen, J. Q., Contreras, R. G., Wang, R., Fernandez, S. V., Shoshani, L., Russo, I. H., Cereijido, M., and Russo, J. (2005) Sodium/potassium ATPase (NA(+), K(+)-ATPase) and ouabain/related cardiac glycosides: a new paradigm for development of anti- breast cancer drugs? Breast Cancer Res. Treat. 2, 1–15.

    CAS  Google Scholar 

  33. Mijatovic, T., Op De Beeck, A., Van Quaquebeke, E., Dewelle, J., Darro, F., de Launoit, Y., and Kiss, R. (2006) The cardenolide UNBS1450 is able to deactivate nuclear factor {kappa}B-mediated cytoprotective effects in human non-small cell lung cancer cells. Mol. Cancer. Ther. 5, 391–399.

    PubMed  CAS  Google Scholar 

  34. Schoner, W. and Scheiner-Bobis, G. (2005) Endogenous cardiac glycosides: hormones using the sodium pump as signal transducer. Semin. Nephrol. 25, 343–351.

    PubMed  CAS  Google Scholar 

  35. Ferrandi, M., Barassi, P., Molinari, I., Torielli, L., Tripodi, G., Minotti, E., Bianchi, G., and Ferrari, P. (2005) Ouabain antagonists as antihypertensive agents. Curr. Pharm. Design. 11, 3301–3305.

    CAS  Google Scholar 

  36. Kennedy, D. J., Vetteth, S., Periyasamy, S. M., Kanj, M., Fedorova, L., Khouri, S., Kahaleh, M. B., Xie, Z., Malthotra, D., Kolodkin, N. I., Lakatta, E. G., Fedorova, O. V., Bagrov, A. Y., and Shapiro, J. I. (2006) Central role for the cardiotonic steroid marinobufagin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension 47, 488–495.

    PubMed  CAS  Google Scholar 

  37. Dostanic-Larson, I., Van Huysse, J. W., Lorenz, J. N., and Lingrel, J. B. (2005) The highly conserved cardiac glycoside binding site of Na,K-ATPase plays a role in blood pressure regulation. Proc. Natl. Acad. Sci. 102, 15845–15850.

    PubMed  CAS  Google Scholar 

  38. Contreras, R. G., Flores-Maldonado, C., Lazaro, A., Shoshani, L., Flores-Benitez, D., Larre, I., and Cereijido, M. (2004) Ouabain binding to Na+,K+-ATPase relaxes cell attachment and sends a specific signal (NACos) to the nucleus. J. Membr. Biol. 198, 147–158.

    PubMed  CAS  Google Scholar 

  39. Peng, M., Huang, L., Xie, Z., Huang, W. H., and Askari, A. (1996) Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expressions of early-response genes in cardiac myocytes. J. Biol. Chem. 271, 10372–10378.

    PubMed  CAS  Google Scholar 

  40. Huang, L., Li, H., and Xie, Z. (1997) Ouabain-induced hypertrophy in cultured cardiac myocytes is accompanied by changes in expression of several late response genes. J. Mol. Cell Cardiol. 29, 429–437.

    PubMed  CAS  Google Scholar 

  41. Saunders, R. and Scheiner-Bobis, G. (2004) Ouabain stimulates endothelin release and expression in human endothelial cells without inhibitng the sodium pump. Eur. J. Biochem. 271, 1054–1062.

    PubMed  CAS  Google Scholar 

  42. Dmitrieva, R.I. and Doris, P.A. (2003) Ouabain is a potent promoter of growth and activator of ERK1/2 in ouabain-resistant rat renal epithelial cells. J. Biol. Chem. 278, 28160–28166.

    PubMed  CAS  Google Scholar 

  43. Abramowitz, J., Dai, C., Hirschi, K. K., Dmitrieva, R. I., Doris, P. A., Liu, L., and Allen, J. C. (2003) Ouabain- and marinobufagin-induced proliferation of human umbilical vein smooth muscle cells and a rat vascular smooth muscle cell line, A7r5. Circulation 108, 3048–3053.

    PubMed  CAS  Google Scholar 

  44. Thomas, S. M. and Brugge, J. S. (1997) Cellular functions regulated by Src family kinases. Annu. Rev. Cell. Dev. Biol. 13, 513–609.

    PubMed  CAS  Google Scholar 

  45. Young, M. A., Gonfloni, S., Superti-Furga, G., Roux, B., and Kuriyan, J. (2001) Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlines their inactivation by C-terminal tyrosine phosphorylation. Cell 105, 115–126.

    PubMed  CAS  Google Scholar 

  46. Xu, W., Harrison, S. C., and Eck, M. J. (1997) Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602.

    PubMed  CAS  Google Scholar 

  47. Aydemir-Koksoy, A., Abramowitz, J., and Allen, J. C. (2001) Oubain-induced signaling and vascular smooth muscle cell proliferation. J. Biol. Chem. 276, 46605–46611.

    PubMed  CAS  Google Scholar 

  48. Haas, M., Wang, H., Tian, J., and Xie, Z. (2002) Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. 277, 18694–18702.

    PubMed  CAS  Google Scholar 

  49. Liu, J. (2005) Ouabain-induced endocytosis and signal transduction of the Na/K-ATPase. Front. Biosci. 10, 2056–2063.

    PubMed  CAS  Google Scholar 

  50. Yuan, Z., Cai, T., Tian, J., Ivanov, A. V., Giovannucci, D. R., and Xie, Z. (2005) Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol. Biol. Cell 16, 4043–4045.

    Google Scholar 

  51. Tian, J., Cai, T., Yuan, Z., Wang, H., Liu, L., Haas, M., Maksimova, E., Huang, X. Y., and Xie, Z. J. (2006) Binding of Src to Na+/K+-ATPase Forms a functional signaling complex. Mol. Biol. Cell. 17, 317–326.

    PubMed  CAS  Google Scholar 

  52. Ihle, J. N. (1994) The Janus kinase family and signaling through members of the cytokine receptor superfamily. Proc. Soc. Exp. Biol. Med. 206, 268–272.

    PubMed  CAS  Google Scholar 

  53. Wan, Y., Belt, A., Wang, Z., Voorhees, J., and Fisher, G. (2001) Transmodulation of epidermal growth factor receptor mediates IL-1 beta-induced MMP-1 expression in cultured human keratinocytes. Int. J. Mol. Med. 7, 329–334.

    PubMed  CAS  Google Scholar 

  54. Kanagawa, M., Watanabe, S., Kaya, S., Togawa, K., Imagawa, T., Shimada, A., Kikuchi, K., and Taniguchi, K. (2000) Membrane enzyme systems responsible for the Ca(2+)-dependent phosphorylation of Ser(27), the independent phosphorylation of Tyr(10) and Tyr(7), and the dephosphorylation of these phosphorylated residues in the alpha-chain of H/K-ATPase. J. Biochem. (Tokyo) 127, 821–828.

    CAS  Google Scholar 

  55. Ferrandi, M., Molinari, I., Barassi, P., Minotti, E., Bianchi, G., and Ferrari, P. (2004) Organ hypertrophic signaling within caveolae membrane subdomains triggered by ouabain and antagonized by PST 2238. J. Biol. Chem. 279, 33306–33314.

    PubMed  CAS  Google Scholar 

  56. Bozulic, L. D., Dean, W. L., and Delamere, N. A. (2005) The influence of SRC-family tyrosine kinases on Na,K-ATPase activity in lens epithelium. Invest. Opthalmol. Vis. Sci. 46, 618–622.

    Google Scholar 

  57. Feraille, E., Carranza, M. L., Gonin, S., Beguin, P., Pedemonte, C., Rousselot, M., Caverzasio, J., Geering, K., Martin, P. Y., and Favre, H. (1999) Insulin-induced stimulation of Na+,K(+)-ATPase activity in kidney proximal tubule cells depends on phosphorylation of the alphasubunit at Tyr-10. Mol. Biol. Cell. 10, 2847–2859.

    PubMed  CAS  Google Scholar 

  58. Al-Khalili, L., Krook, A., and Chibalin, A. V. (2003) Phosphorylation of the Na+, K+-ATPase in skeletal muscle: potential mechanism for changes in pump cell-surface abundance and activity. Ann. N Y Acad. Sci. 986, 449–452.

    PubMed  CAS  Google Scholar 

  59. Ullrich, A. and Schlessinger, J. (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212.

    PubMed  CAS  Google Scholar 

  60. Luttrell, L. M., Daaka, Y., and Lefkowitz, R. J. (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr. Opin. Cell. Biol 11, 177–183.

    PubMed  CAS  Google Scholar 

  61. Chen, K., Vita, J. A., Berk, B. C., and Keaney, Jr., J. F. (2001) c-Jun N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation. J. Biol. Chem. 276, 16045–16050.

    PubMed  CAS  Google Scholar 

  62. Andreev, J., Galisteo, M. L., Kranenburg, O., Logan, S. K., Chiu, E. S., Okigaki, M., Cary, L. A., Moolenaar, W. H., and Schlessinger, J. (2001) Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J. Biol. Chem. 276, 20130–20135.

    PubMed  CAS  Google Scholar 

  63. Prenzel, N., Fischer, O. M., Streit, S., Hart, S., and Ullrich, A. (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr. Relat. Cancer 8, 11–31.

    PubMed  CAS  Google Scholar 

  64. Haas, M., Askari, A., and Xie, Z. (2000) Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chem. 275, 27832–27837.

    PubMed  CAS  Google Scholar 

  65. Rameh, L. E. and Cantley, L. C. (1999). The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 347–350.

    Google Scholar 

  66. Yudowski, G. A., Efendiev, R., Pedemonte, C. H., Katz, A. I., Berggren, P. O., Bertorello, A. M. (2000) Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+, K+-ATPase alpha subunit and regulates its trafficking. Proc. Natl. Acad. Sci. USA. 97, 6556–6561.

    PubMed  CAS  Google Scholar 

  67. Barwe, S. P., Anilkumar, G., Moon, S. Y., Zheng, Y., Whitelegge, J. P., Rajasekaran, S. A., and Rajasekaran, A. K. (2005) Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell. 16, 1082–1094.

    PubMed  CAS  Google Scholar 

  68. Zhou, X., Jiang, G., Zhao, A., Bondeva, T., Hirszel, P., and Balla, T. (2001) Inhibition of Na,K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells. Biochem. Biophys. Res. Commun. 285, 46–51.

    PubMed  CAS  Google Scholar 

  69. Liu, J., Kesiry, R., Periyasami, S. M., Malhotra, D., Xie, Z., and Shapiro, J. (2004) Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int. 66, 227–241.

    PubMed  CAS  Google Scholar 

  70. Liu, J., Periyasamy, S. M., Gunning, W., Fedorova, O. V., Bagrov, A. Y., Malhotra, D., Xie, Z., and Shapiro, J. I. (2002) Effects of cardiac glycosides on sodium pump expression and function in LLC-PK1 and MDCK cells. Kidney Int. 62, 118–125.

    Google Scholar 

  71. Liu, P., Rudick, M., and Anderson, R. G. (2002) Multiple functions of caveolin-1. J. Biol. Chem. 277, 41295–41298.

    PubMed  CAS  Google Scholar 

  72. Razani, B., Woodman, S. E., and Lisanti, M. P. (2002) Caveolae: from cell biology to animal physiology. Pharmacol. Rev. 54, 431–467.

    PubMed  CAS  Google Scholar 

  73. Wang, H., Haas, M., Liang, M., Cai, T., Tian, J., Li, S., and Xie, Z. (2004) Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J. Biol. Chem. 279, 17250–17259.

    PubMed  CAS  Google Scholar 

  74. Liu L., Mohammadi, K., Aynafshar, B., Wang, H., Li, D., Liu, J., Ivanov, A. V., Xie, Z., and Askari, A. (2003) Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase. Am. J. Physiol. Cell Physiol. 284, C1550-C1560.

    PubMed  CAS  Google Scholar 

  75. Liu, L., Abramowitz, J., Askari, A., and Allen, J. C. (2004) Role of caveolae in ouabain-induced proliferation of cultured vascular smooth musccle cells of the synthetic phenotype. Am. J. Physiol. Heart Circ. Physiol. 287, H2173-H2182.

    PubMed  CAS  Google Scholar 

  76. Denker, S. P. and Barber, D. L. Ion transport proteins anchor and regulate the cytoskeleton (2002) Curr. Opin. Cell. Biol. 14, 214–220.

    PubMed  CAS  Google Scholar 

  77. Rebecchi, M. J. and Pentyala, S. N. (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291–1335.

    PubMed  CAS  Google Scholar 

  78. Mohler, P. J., Schott, J. J., Gramolini, A. O., Dilly, K. W., Guatimosim, S., duBell, W. H., Song, L. S., Haurogne, K., Kyndt, F., Ali, M. E., Rogers, T. B., Lederer, W. J., Escande, D., Le Marec, H., and Bennett, V. (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634–639.

    PubMed  CAS  Google Scholar 

  79. Xiao, B., Tu, J. C., Petralia, R. S., Yuan, J. P., Doan, A., Breder, C. D., Ruggiero, A., Lanahan, A. A., Wenthold, R. J., and Worley, P. F. (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 21, 707–716.

    PubMed  CAS  Google Scholar 

  80. Askari, A. (2000) Significance of protein-protein interactions to Na+/K+-ATPase functions. In Na +K +-ATPase and Related ATPase, in Excerpta Medica International (Taniguchi K and Kaya S, eds.). Congress Series 1207 Elsevier Amsterdam.

    Google Scholar 

  81. Mao, H., Ferguson, T. S., Cibulsky, S. M., Holmqvist, M., Ding, C., Fei, H., and Levitan, I. B. (2005) MONaKA, a novel modulator of the plasma membrane Na,K-ATPase. J. Neurosci. 25, 7934–7943.

    PubMed  CAS  Google Scholar 

  82. Nelson, W. J., and Veshnock, P. J. (1987) Ankyrin binding to Na+,K+-ATPase and implications for the organization of membrane domains in polarized cells. Nature 328, 533–536.

    PubMed  CAS  Google Scholar 

  83. Devarajan, P., Stabach, P. R., De Matteis, M. A., and Morrow, J. S. (1997) Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrinankyrin G119 skeleton in Madin Darby canine kidney cells. Proc. Natl. Acad. Sci. 94, 10711–10716.

    PubMed  CAS  Google Scholar 

  84. Jung, J., Yoon, T., Choi, E. C., and Lee, K. (2002) Interaction of cofilin with triose-phosphate isomerase contributes glycolytic fuel for Na,K-ATPase via Rho-mediated signaling pathway. J. Biol. Chem. 277, 48931–48937.

    PubMed  CAS  Google Scholar 

  85. Rajasekaran SA, Barwe SP, Rajasekaran AK (2005) Multiple functions of Na,K-ATPase in epithelial cells. Semin. Nephrol. 25, 328–334.

    PubMed  CAS  Google Scholar 

  86. Genova, J. L. and Fehon, R. G. (2003) Neuroglian, Gliotactin, and the Na+/K+ATPase are essential for septate junction function in Drosophila. J. Cell. Biol. 161, 979–89.

    PubMed  CAS  Google Scholar 

  87. Shoshani, L., Contreras, R. G., Roldan, M. L., Moreno, J., Lazaro, A., Balda, M. S., Matter, K., and Cereijido, M. (2005) The polarized expression of Na+,K+-ATPase in epithelia depends on the association between beta-subunits located in neighboring cells. Mol. Biol. Cell. 16, 1071–1081.

    PubMed  CAS  Google Scholar 

  88. Lencesova, L., O'Neill, A., Resneck, W. G., Bloch, R. J., and Blaustein, M. P. (2004) Plasma membrane-cytoskeleton-endoplasmic reticulum complexes in neurons and astrocytes. J. Biol. Chem. 279, 2885–2893.

    PubMed  CAS  Google Scholar 

  89. Miyakawa-Naito, A., Uhlen, P., Lal, M., Aizman, O., Mikoshiba, K., Brismar, H., Zelenin, S., and Aperia, A. (2003) Cell signaling microdomain with Na,K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations. J. Biol. Chem. 278, 50355–50361.

    PubMed  CAS  Google Scholar 

  90. Dostanic, I., Schultz Jel, J., Lorenz, J. N., and Lingrel, J. B. (2004) The alpha 1 isoform of Na,K-ATPase regulates cardiac contractility and functionally interacts and co-localizes with the Na/Ca exchanger in heart. J. Biol. Chem. 279, 54053–54061.

    PubMed  CAS  Google Scholar 

  91. Barry, W. H., Hasin, Y., and Smith, T. W. (1985) Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ. Res. 56, 231–241.

    PubMed  CAS  Google Scholar 

  92. Aizman, O., Uhlen, P., Lal, M., Brismar, H., and Aperia, A. (2001) Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc. Natl. Acad. Sci. USA. 98, 13420–13424.

    PubMed  CAS  Google Scholar 

  93. Ussing, H. H., Kruhoffer, P., Thaysen, J. H., and Thorn, N. A. (1960) The Alkali metal ions in biology, Handbuch der experimentellen pharmakologie Vol. 13. Berlin, Gottingen & Heidelberg, Springer-Verlag: pp. xii-598.

    Google Scholar 

  94. Tosteson, D. C. and Hoffman, J. F. (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44, 169.

    PubMed  CAS  Google Scholar 

  95. Hoffman, E. K. (2001) The pump and leak steady-state concept with a variety of regulated leak pathways, J. Memb. Biol. 184, 321–330.

    Google Scholar 

  96. Giebisch, G., Wang, W., and Hebert, S. C. ATP-dependent potassium channels in the kidney. In Pharmacology of Ion Channel Function: Activators and Inhibitors (Endo, M., Kurachi, Y., and Mishina, M., eds.). Berlin, Springer, 2000, pp. 243–270.

    Google Scholar 

  97. Muto, S., Asano, Y., Seldin, D., and Giebisch, G. (1999) Basolateral Na+ pump modulates apical Na+ and K+ conductances in rabbit cortical collecting ducts. Am. J. Physiol. 276, F143-F158.

    PubMed  CAS  Google Scholar 

  98. Wang, W. H., Geibel, J., and Giebisch, G. (1993) Mechanism of apical K+ channel modulation in principal renal tubule cells. Effect of inhibition of basolateral Na(+)−K(+)-ATPase. J. Gen. Physiol. 101, 673–694.

    PubMed  CAS  Google Scholar 

  99. Welling, P. A. (1995) Cross-talk and the role of KATP channels in the proximal tubule. Kidney Int. 48, 1017–1023.

    PubMed  CAS  Google Scholar 

  100. Fedorova, O. V., Doris, P. A., and Bagrov, A. Y. (1998) Endogenous marinobufagenin-like factor in acute plasma volume expansion. Clin. Exp. Hypertens, 20, 581–591.

    PubMed  CAS  Google Scholar 

  101. Oweis, S., Wu, L., Kiela, P. R., Zhao, H., Malhotra, D., Ghishan, F. K., Xie, Z., Shapiro, J. I., and Liu, J. (2005) Cardiac glycoside down-regulates NHE3 activity and expression in LLC-PK1 cells. Am. J. Physiol. Renal. Physiol. 290(5), F997–1008.

    PubMed  Google Scholar 

  102. Lin, D. H., Sterling, H., Yang, B., Hebert, S. C., Giebisch, G., and Wang, W. H. (2004) Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct. Am. J. Physiol. Renal. Physiol. 286, F881-F892.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierre, S.V., Xie, Z. The Na,K-ATPase receptor complex. Cell Biochem Biophys 46, 303–315 (2006). https://doi.org/10.1385/CBB:46:3:303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:46:3:303

Index Entries

Navigation