Skip to main content

Na/K-ATPase and Its Role in Signal Transduction

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 15))

  • 1218 Accesses

Abstract

The Na/K-ATPase was discovered as an essential ion pump that maintains intracellular ionic balance by transporting potassium and sodium ions into and out of eukaryotic cells at the expense of ATP. The efforts of numerous investigators during the last two decades have revealed several important non-pumping functions of Na/K-ATPase. This chapter focuses on the molecular mechanism of Na/K-ATPase-mediated signal transduction and its potential regulatory role in animal physiology and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skou JC (1989) The identification of sodium-pump as the membrane-bound Na+/K+-ATPase: a commentary on ‘The influence of some cations on an Adenosine Triphosphatase from peripheral nerves’. Biochim Biophys Acta 1000:435–438

    Article  CAS  PubMed  Google Scholar 

  2. Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 293:C509–C536

    Article  CAS  PubMed  Google Scholar 

  3. Bagrov AY, Shapiro JI, Fedorova O (2009) Endogenous Cardiotonic steroids: physiology, pharmacology and novel therapeutic targets. Pharmacol Rev 61:9–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Quastrel MR, Kaplan JG (1968) Inhibition of ouabain of human lymphocyte transformation induced by phytohemagglutinin in vitro. Nature 219:198–200

    Article  Google Scholar 

  5. Kaplan JG (1978) Membrane cation transport and the control of proliferation of mammalian cells. Annu Rev Physiol 40:19–41

    Article  CAS  PubMed  Google Scholar 

  6. Shiratori O (1967) Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: in vitro and in vivo studies. Gann 58:521–528

    CAS  PubMed  Google Scholar 

  7. Xie Z, Cai T (2003) Na+-K+-ATPase mediated signal transduction: from protein interaction to cellular function. Mol Interv 3(3):157–168

    Article  CAS  PubMed  Google Scholar 

  8. Aperia A (2006) New roles for an old enzyme: Na, K-ATPase emerges as an interesting drug target. J Intern Med 261:44–52

    Article  CAS  Google Scholar 

  9. Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266

    Article  CAS  PubMed  Google Scholar 

  10. Toyoshima JH, Nakasako M, Nomura H et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405(6787):647–655

    Article  CAS  PubMed  Google Scholar 

  11. Morth JP, Pedersen BP, Toustrup-Jensen T et al (2007) Crystal structure of the sodium potassium pump. Nature 450:1043–1050

    Article  CAS  PubMed  Google Scholar 

  12. Shinoda T, Ogawa H, Cornelius F et al (2009) Crystal structure of the sodium potassium pump at 2.4 Å resolution. Nature 459(7245):446–450

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Xie Z (2009) The Na/K-ATPase/Src complex and Cardiotonic steroid-activated protein kinase cascades. Pflugers Arch 457:635–644

    Article  CAS  PubMed  Google Scholar 

  14. Tian J, Xie Z (2008) The Na-K-ATPase and calcium signaling microdomains. Physiology (Bethesda) 23:205–211

    Article  CAS  Google Scholar 

  15. Christian HA (1933) The use of digitalis other than in the treatment of cardiac decompensation. JAMA 100:789–792

    Article  Google Scholar 

  16. Pressley T (1988) Ion concentration-dependent regulation of Na, K-pump abundance. J Membr Biol 105:187–195

    Article  CAS  PubMed  Google Scholar 

  17. Boardman L, Huett M, Lamb JF (1974) Evidence for the genetic control of the sodium pump density in HeLa cells. J Physiol 241(3):771–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peng M, Huang L, Xie Z et al (1996) Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expressions of early-response genes in cardiac myocytes. J Biol Chem 271:10372–10378

    Article  CAS  PubMed  Google Scholar 

  19. Tian J, Liu J, Garlid KD et al (2003) Involvement of mitogen-activated protein kinases and reactive oxygen species in the inotropic action of ouabain on cardiac myocytes. A potential role for mitochondrial KATP channels. Mol Cell Biochem 242:181–187

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Tian J, Haas M et al (2000) Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J Biol Chem 275(36):27838–27844

    CAS  PubMed  Google Scholar 

  21. Haas M, Wang H, Tian J et al (2002) Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem 277:18694–70218

    Article  CAS  PubMed  Google Scholar 

  22. Haas M, Askari A, Xie Z (2000) Involvement of Src and epidermal growth factor receptor in the signal transducing function of Na+/K+-ATPase. J Biol Chem 275:27832–27837

    CAS  PubMed  Google Scholar 

  23. Saunders R, Scheiner-Bobis G (2004) Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pump. Eur J Biochem 271:1054–1062

    Article  CAS  PubMed  Google Scholar 

  24. Eva A, Kirch U, Scheiner-Bobis G (2006) Signaling pathways involving the sodium pump stimulate NO production in endothelial cells. Biochim Biophys Acta 1758(11):1809–1814

    Article  CAS  PubMed  Google Scholar 

  25. Aydemir-Koksoy A, Abramowitz J, Allen JC (2001) Ouabain-induced signaling and vascular smooth muscle cell proliferation. J Biol Chem 276:46605–46611

    Article  CAS  PubMed  Google Scholar 

  26. Chueh SC, Guh JH, Chen J et al (2001) Dual effects of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J Urol 166:347–353

    Article  CAS  PubMed  Google Scholar 

  27. Dmitrieva RI, Doris PA (2003) Ouabain is a potent promoter of growth and activator of ERK1/2 in ouabain-resistant rat renal epithelial cells. J Biol Chem 278:28160–28166

    Article  CAS  PubMed  Google Scholar 

  28. Ferrandi M, Molinari I, Barassi P et al (2004) Organ hypertrophic signaling within caveolae membrane subdomains triggered by ouabain and antagonized by PST 2238. J Biol Chem 279:33306–33314

    Article  CAS  PubMed  Google Scholar 

  29. Golomb E, Hill MR, Brown RG et al (1994) Ouabain enhances the mitogenic effect of serum in vascular smooth muscle cells. Am J Hypertens 7:69–74

    Article  CAS  PubMed  Google Scholar 

  30. Griffiths NM, Ogden PH, Cormack R et al (1991) Discrepancy between the short and long term effects of ouabain on the sodium pumps of human cells grown in culture. Br J Pharmacol 104:419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu JW, Jin RM, Li EQ et al (2009) Signal pathways in ouabain-induced proliferation of leukemia cells. World J Pediatr 5:140–145

    Article  CAS  PubMed  Google Scholar 

  32. Huang L, Li H, Xie Z (1997) Ouabain-induced hypertrophy in cultured cardiac myocytes is accompanied by changes in expression of several late response genes. J Mol Cell Cardiol 29:429–437

    Article  CAS  PubMed  Google Scholar 

  33. Li M, Wang Q, Guan L (2007) Effects of ouabain on proliferation, intracellular free calcium and c-myc mRNA expression in vascular smooth muscle cells. J Comp Physiol B 177:589–595

    Article  CAS  PubMed  Google Scholar 

  34. Lucas TF, Amaral LS, Porto CS et al (2012) Na+/K+-ATPase α1 isoform mediates ouabain-induced expression of cyclin D1 and proliferation of rat sertoli cells. Reproduction 144(6):737–745

    Article  CAS  PubMed  Google Scholar 

  35. Qiu J, Gao HQ, Zhou RH et al (2007) Proteomics analysis of the proliferative effect of low-dose ouabain on human endothelial cells. Biol Pharm Bull 30:247–253

    Article  CAS  PubMed  Google Scholar 

  36. Ramirez-Ortega M, Maldonado-Lagunas V, Melendez-Zajgla J et al (2006) Proliferation and apoptosis of HeLa cells induced by in vitro stimulation with digitalis. Eur J Pharmacol 534:71–76

    Article  CAS  PubMed  Google Scholar 

  37. Nguyen AN, Wallace DP, Blanco G (2007) Ouabain binds with high affinity to the Na, K-ATPase in human polycystic kidney cells and induces extracellular signal-regulated kinase activation and cell proliferation. J Am Soc Nephrol 18:46–57

    Article  CAS  PubMed  Google Scholar 

  38. Jansson K, Magenheimer BS, Maser RL et al (2013) Overexpression of the polycystin-1 C-tail enhances sensitivity of M-1 cells to ouabain. J Membr Biol 246(7):581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. El-Okdi N, Smaili S, Raju V et al (2008) Effects of Cardiotonic steroids on dermal collagen synthesis and wound healing. J Appl Physiol 105(1):30–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elkareh J, Kennedy DJ, Yashaswi B et al (2007) Marinobufagenin stimulates fibroblast collagen production and causes fibrosis in experimental uremic cardiomyopathy. Hypertension 49(1):215–224

    Article  CAS  PubMed  Google Scholar 

  41. Quintas LE, Pierre SV, Liu L et al (2010) Alterations of Na+/K+-ATPase function in caveolin-1 knockout cardiac fibroblasts. J Mol Cell Cardiol 49(3):525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dvela M, Rosen H, Ben-Ami HC et al (2012) Endogenous ouabain regulates cell viability. Am J Physiol Cell Physiol 302(2):C442–C452

    Article  CAS  PubMed  Google Scholar 

  43. Bielawski K, Winnicka K, Bielawska A (2006) Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol Pharm Bull 29:1493–1497

    Article  CAS  PubMed  Google Scholar 

  44. Kometiani P, Liu L, Askari A (2005) Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol Pharmacol 67:929–936

    Article  CAS  PubMed  Google Scholar 

  45. Kulikov A, Eva A, Kirch U et al (2007) Ouabain activates signaling pathways associated with cell death in human neuroblastoma. Biochim Biophys Acta 1768:1691–1702

    Article  CAS  PubMed  Google Scholar 

  46. Lopez-Lazaro M, Pastor N, Azrak SS et al (2005) Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J Nat Prod 68:1642–1645

    Article  CAS  PubMed  Google Scholar 

  47. McConkey DJ, Lin Y, Nutt LK et al (2000) Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res 60:3807–3812

    CAS  PubMed  Google Scholar 

  48. Wang Z, Zheng M, Li Z et al (2009) Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition. Cancer Res 69:6556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Qiu Q, Shen JJ et al (2012) Cardiac glycosides induce autophagy in human non-small cell lung cancer cells through regulation of dual signaling pathways. Int J Biochem Cell Biol 44(11):1813–1824

    Article  CAS  PubMed  Google Scholar 

  50. Prassas I, Karagiannis GS, Batruch I et al (2011) Digitoxin-induced cytotoxicity in cancer cells is mediated through distinct kinase and interferon networks. Mol Cancer Ther 10(11):2083–2093

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Zhan Y, Xu R et al (2014) Src mediates extracellular signal-regulated kinase ½ activation and autophagic cell death induced by cardiac glycosides in human non-small cell lung cancer cell lines. Mol Carcinog 54(Suppl 1):E26–E34

    PubMed  Google Scholar 

  52. Dostanic I, Paul RJ, Lorenz JN et al (2005) The α2-isoform of Na-K-ATPase mediates ouabain-induced hypertension in mice and increased vascular contractility in vitro. Am J Physiol Heart Circ Physiol 288:H477–H485

    Article  CAS  PubMed  Google Scholar 

  53. Dostanic-Larson I, Van Huysse JW, Lorenz JN et al (2005) The highly conserved cardiac glycoside binding site of Na, K-ATPase plays a role in blood pressure regulation. Proc Natl Acad Sci U S A 102:15845–15850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blaustein MP (1977) Sodium ions, calcium ions, blood pressure regulation and hypertension: a reassessment and a hypothesis. Am J Physiol Cell Physiol 232:C165–C173

    CAS  Google Scholar 

  55. Blaustein MP, Leenen FHH, Chen L et al (2012) How NaCl raises blood pressure: a new paradigm for the parthenogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol 302:H1031–H1049

    Article  CAS  PubMed  Google Scholar 

  56. Tian J, Cai T, Yuan Z et al (2006) Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell 17:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ye Q, Li Z, Tian J et al (2011) Identification of a potential receptor that couples ion transport to protein kinase activity. J Biol Chem 286:6225–6232

    Article  CAS  PubMed  Google Scholar 

  58. Wang H, Haas M, Liang M (2004) Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J Biol Chem 279:17250–17259

    Article  CAS  PubMed  Google Scholar 

  59. Kotova O, Galuska D, Essen-Gustavsson B et al (2006) Metabolic and signaling events mediated by Cardiotonic steroid ouabain in rat skeletal muscle. Cell Mol Biol (Noisy-le-Grand) 52:48–57

    CAS  Google Scholar 

  60. Wang XQ, Yu SP (2005) Novel regulation of Na, K-ATPase by Src tyrosine kinases in cortical neurons. J Neurochem 93:1515–1523

    Article  CAS  PubMed  Google Scholar 

  61. Jung J, Kim HY, Kim H et al (2011) Translationally controlled tumor protein induces human breast epithelial cell transformation through activation of Src. Oncogene 30:2264–2274

    Article  CAS  PubMed  Google Scholar 

  62. Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301–354

    Article  CAS  PubMed  Google Scholar 

  63. Parsons SJ, Parsons JT (2004) Src family kinases key regulators of signal transduction. Oncogene 23:7906–7909

    Article  CAS  PubMed  Google Scholar 

  64. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  CAS  PubMed  Google Scholar 

  65. Xu W, Harrison SC, Eck MJ (1997) The three dimensional structure of the tyrosine kinase c-Src. Nature 385:595–602

    Article  CAS  PubMed  Google Scholar 

  66. Bromann PA, Korkaya H, Courtneidge SA (2004) The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23:7957–7968

    Article  CAS  PubMed  Google Scholar 

  67. Maa MC, Leu TH, McCarley TJ et al (1995) Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci U S A 92(15):6981–6985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liang M, Cai T, Tian J et al (2006) Functional characterization of Src-interacting Na/K-ATPase using RNA interference assay. J Biol Chem 281:19709–19719

    Article  CAS  PubMed  Google Scholar 

  69. Baker PF, Willis JS (1969) On the number of sodium pumping sites in cell membranes. Biochim Biophys Acta 183:646–649

    Article  CAS  PubMed  Google Scholar 

  70. Carpenter G, Cohen S (1979) Epidermal growth factor. Annu Rev Biochem 48:193–216

    Article  CAS  PubMed  Google Scholar 

  71. Chen Y, Cai T, Wang H et al (2009) Regulation of intracellular cholesterol distribution by Na/K-ATPase. J Biol Chem 284:14881–14890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu L, Mohammadi K, Aynafshar B et al (2003) Role of caveolae in signal transducing function of cardiac Na+/K+-ATPase. Am J Physiol Cell Physiol 284:C1550–C1560

    Article  CAS  PubMed  Google Scholar 

  73. Cooper JA, Gould KL, Cartwright CA et al (1986) Tyr is phosphorylated in pp 60(c-src): implications for regulation. Science 231:1431–1434

    Article  CAS  PubMed  Google Scholar 

  74. Schulte RJ, Sefton BM (2003) Inhibition of the activity of SRC and Abl tyrosine protein kinases by the binding of the Wiskott–Aldrich syndrome protein. Biochemistry 42:9424–9430

    Article  CAS  PubMed  Google Scholar 

  75. Li Z, Cai T, Tian J et al (2009) NaKtide, a Na/K-ATPase derived peptide Src inhibitor antagonizes ouabain-activated signal transduction in cultured epithelial cells. J Biol Chem 284:21066–21076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li Z, Zhang Z, Xie JX et al (2011) Na/K-ATPase mimetic pNaKtide peptide inhibits the growth of human cancer cells. J Biol Chem 286:32394–32403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lai F, Madan N, Ye Q et al (2013) Identification of a mutant α1 Na/K-ATPase that pumps but is defective in signal transduction. J Biol Chem 288:13295–13304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Suzuki K, Taniguchi K, Iida S (1985) Ouabain binding and the conformational change in Na+, K+-ATPase. Nippon Yakurigaku Zasshi 86:181–188

    Article  CAS  PubMed  Google Scholar 

  79. Carilli CT, Farley RA, Perlman DM, Cantley LC (1982) The active site structure of Na+- and K+-stimulated ATPase. Location of a specific fluorescein isothiocyanate reactive site. J Biol Chem 257:5601–5606

    CAS  PubMed  Google Scholar 

  80. Ye Q, Lai F, Banerjee M et al (2013) Expression of mutant alpha1 Na/K-ATPase defective in conformational transition attenuates Src-mediated signal transduction. J Biol Chem 288:5803–5814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kennedy DJ, Chen Y, Huang W et al (2013) CD36 and Na/K-ATPase α1 form a proinflammatory signaling loop in kidney. Hypertension 61:216–224

    Article  CAS  PubMed  Google Scholar 

  82. Bozulic LD, Dean WL, Delamere NA (2005) The influence of SRC-family tyrosine kinases on Na, K-ATPase activity in lens epithelium. Invest Ophthalmol Vis Sci 46:618–622

    Article  PubMed  Google Scholar 

  83. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity and function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  84. Pierre SV, Sottejeau Y, Gourbeau JM et al (2008) Isoform specificity of Na-K-ATPase-mediated ouabain signaling. Am J Physiol Renal Physiol 294:F859–F866

    Article  CAS  PubMed  Google Scholar 

  85. Karpova LV, Bulygina ER, Boldyrev AA (2010) Different neuronal Na(+)/K(+)-ATPase isoforms are involved in diverse signaling pathways. Cell Biochem Funct 28:135–141

    Article  CAS  PubMed  Google Scholar 

  86. Konrad L, Raimund D, Kirch U et al (2011) Cardiotonic steroids trigger non-classical testosterone signaling in Sertoli cells via the α4 isoform of the sodium pump. Biochim Biophys Acta 1813:2118–2124

    Article  CAS  PubMed  Google Scholar 

  87. Newton LD, Krishnakumar S, Menon AG et al (2010) Na+/K+ATPase regulates sperm capacitation through a mechanism involving kinases and redistribution of its testis-specific isoform. Mol Reprod Dev 77:136–148

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kanagawa M, Watanabe S, Kaya S et al (2000) Membrane enzyme systems responsible for the Ca(2+)-dependent phosphorylation of Ser(27), the independent phosphorylation of Tyr(10) and Tyr(7), and the dephosphorylation of these phosphorylated residues in the alpha chain of H/K-ATPase. J Biochem 127:821–828

    Article  CAS  PubMed  Google Scholar 

  89. Okamoto CT, Li R, Zhang Z et al (2002) Regulation of protein and vesicle trafficking at the apical membrane of epithelial cells. J Control Release 78:35–41

    Article  CAS  PubMed  Google Scholar 

  90. Weigand KM, Swarts HG, Fedosova NU et al (2012) Na, K-ATPase activity modulates Src activation: a role for ATP/ADP ratio. Biochim Biophys Acta 1818:1269–1273

    Article  CAS  PubMed  Google Scholar 

  91. Liu L, Ivanov AV, Gable ME et al (2011) Comparative properties of caveolar and noncaveolar preparations of kidney Na+/K+-ATPase. Biochemistry 50:8664–8673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu L, Abramowitz J, Askari A et al (2004) Role of caveolae in ouabain-induced proliferation of cultured vascular smooth muscle cells of the synthetic phenotype. Am J Physiol Heart Circ Physiol 287(5):H2173–H2182

    Article  CAS  PubMed  Google Scholar 

  93. Mohammadi K, Kometiani P, Xie Z et al (2001) Role of protein kinase C in the signal pathways that link Na+/K+-ATPase to ERK1/2. J Biol Chem 276(45):42050–42056

    Article  CAS  PubMed  Google Scholar 

  94. Yuan Z, Cai T, Tian J et al (2005) Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium regulatory complex. Mol Biol Cell 16:4034–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fontana JM, Burlaka I, Khodus G et al (2013) Calcium oscillations triggered by Cardiotonic steroids. FEBS J 280:5450–5455

    Article  CAS  PubMed  Google Scholar 

  96. Aizman O, Uhlen P, Lal M et al (2001) Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc Natl Acad Sci U S A 98(23):13420–13424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miyakawa-Naito A, Uhlen P, Lal M et al (2003) Cell signaling microdomain with Na, K-ATPase and inositol 1,4,5 triphosphate receptor generates calcium oscillations. J Biol Chem 278:50355–50361

    Article  CAS  PubMed  Google Scholar 

  98. Liu X, Spicarova Z, Rydhom S et al (2008) Ankyrin B modulates the function of Na, K-ATPase/inositol 1,4,5-triphosphate receptor signaling microdomain. J Biol Chem 283:11461–11468

    Article  CAS  PubMed  Google Scholar 

  99. Chen Y, Cai T, Yang C et al (2008) Regulation of inositol 1,4,5-triphosphate receptor-mediated calcium release by the Na/K-ATPase in cultured renal epithelial cells. J Biol Chem 283:1128–1136

    Article  CAS  PubMed  Google Scholar 

  100. Golovina VA, Song H, James PF et al (2003) Na+ pump alpha 2-subunit expression modulates Ca2+-signaling. Am J Physiol Cell Physiol 284:C475–C486

    Article  CAS  PubMed  Google Scholar 

  101. Linde CI, Antos LK, Golovina VA et al (2012) Nanomolar ouabain increases NCX1 and enhances Ca2+ signaling in human arterial myocytes: a mechanism that links salt to increased vascular resistance? Am J Physiol Heart Circ Physiol 303:H784–H794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zulian A, Linde CI, Pulina MV et al (2013) Activation of c-Src underlies the differential effects of ouabain and digoxin on Ca(2+) signaling in arterial smooth muscle cells. Am J Physiol Cell Physiol 304:C324–C333

    Article  CAS  PubMed  Google Scholar 

  103. Liu L, Zhao X, Pierre SV et al (2007) Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am J Physiol Cell Physiol 293:C1489–C1497

    Article  CAS  PubMed  Google Scholar 

  104. Tian J, Li X, Liang M et al (2009) Changes in sodium pump expression dictates the effects of ouabain on cell growth. J Biol Chem 284:14921–14929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yan Y, Shapiro AP, Haller S et al (2013) Involvement of reactive oxygen species in a feed-forward mechanism of Na/K-ATPase-mediated signaling transduction. J Biol Chem 288:34249–34258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xie Z, Kometiani P, Liu J et al (1999) Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 274:19323–19328

    Article  CAS  PubMed  Google Scholar 

  107. Wang Y, Ye Q, Liu C et al (2014) Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells. Free Radic Biol Med 71:415–426

    Article  CAS  PubMed  Google Scholar 

  108. Lingrel JB (2010) The physiological significance of the Cardiotonic steroid/ouabain binding site of the Na, K-ATPase. Annu Rev Physiol 72:395–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ahmed A, Pitt B, Rahimtoola SH et al (2008) Effects of digoxin at low serum concentrations on mortality and hospitalization in heart failure: a propensity-matched study of the DIG trial. Int J Cardiol 123:138–146

    Article  PubMed  Google Scholar 

  110. Pasdois P, Quinlan CL, Rissa A et al (2007) Ouabain protects rat hearts against ischemia-reperfusion injury via pathway involving src kinase, mitoKATP, and ROS. Am J Physiol Heart Circ Physiol 292:H1470–H1478

    Article  CAS  PubMed  Google Scholar 

  111. D’Urso G, Frascarelli S, Zucchi R et al (2008) Cardioprotection by ouabain and digoxin in perfused rat hearts. J Cardiovasc Pharmacol 52:333–337

    Article  PubMed  CAS  Google Scholar 

  112. Pierre SV, Yang C, Yuan Z et al (2007) Ouabain triggers preconditioning through activation of the Na+, K+-ATPase signaling cascade in rat hearts. Cardiovasc Res 73:488–496

    Article  CAS  PubMed  Google Scholar 

  113. Li J, Zelenin S, Aperia A et al (2006) Low doses of ouabain protect from serum deprivation-triggered apoptosis and stimulate kidney proliferation via activation of NF-kappaB. J Am Soc Nephrol 17:1848–1857

    Article  CAS  PubMed  Google Scholar 

  114. Khodus GR, Kruusmagi M, Li J et al (2011) Calcium signaling triggered by ouabain protects the embryonic kidney from adverse developmental programming. Pediatr Nephrol 26:149–182

    Article  Google Scholar 

  115. Dvela-Levitt M, Cohen-Ben Ami H, Rosen H et al (2015) Reduction in maternal circulating ouabain impairs offspring growth and kidney development. J Am Soc Nephrol 26:1103–1114

    Article  CAS  PubMed  Google Scholar 

  116. Liu J, Kesiry R, Periyasamy SM et al (2004) Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int 66:227–241

    Article  CAS  PubMed  Google Scholar 

  117. Liu J, Liang M, Liu L et al (2005) Ouabain-induced endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells requires caveolin-1. Kidney Int 67:1844–1854

    Article  CAS  PubMed  Google Scholar 

  118. Gupta S, Yan Y, Malhotra D et al (2012) Ouabain and insulin induce sodium pump endocytosis in renal epithelium. Hypertension 59:665–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu J, Xie ZJ (2010) The sodium pump and Cardiotonic steroids-induced signal transduction protein kinases and calcium signaling microdomain in regulation of transporter trafficking. Biochim Biophys Acta 1802:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dart C (2010) Lipid microdomains and the regulation of ion channel function. J Physiol 588(Pt 17):3169–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cai T, Wang H, Chen Y et al (2007) Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase. J Cell Biol 182:1153–1169

    Article  CAS  Google Scholar 

  122. Chen Y, Li X, Ye Q et al (2011) Regulation of alpha1 Na/K-ATPase expression by cholesterol. J Biol Chem 286(17):15517–15524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hamlyn JM, Manunta P (2011) Endogenous ouabain: a link between sodium intake and hypertension. Curr Hypertens Rep 13:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Larre I, Lazaro A, Contreras RG et al (2010) Ouabain modulates epithelial cell tight junction. Proc Natl Acad Sci U S A 107:11387–11392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Giannatselis H, Calder M, Watson AJ (2011) Ouabain stimulates a Na+/K+-ATPase mediated SFK-activated signaling pathway that regulates tight junction function in the mouse blastocyst. PLoS One 6:e23704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Burkard C, Verheije MH, Haagmans BL et al (2015) ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J Virol 89:4434–4448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gonick HC, Ding Y, Vaziri ND et al (1998) Simultaneous measurement of marinobufagenin, ouabain and hypertension-associated protein in various disease states. Clin Exp Hypertens 20:617–627

    Article  CAS  PubMed  Google Scholar 

  128. Kennedy DJ, Vetteth S, Periyasamy SM et al (2006) Central role for the Cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension 47:488–495

    Article  CAS  PubMed  Google Scholar 

  129. Fridman AI, Matveev SA, Agalkova NI et al (2002) Marinobufagenin, an endogenous ligand of α-1 Na/K-ATPase, is a marker of congestive heart failure. J Hypertens 20:1189–1194

    Article  CAS  PubMed  Google Scholar 

  130. Graves SW (1987) The possible role of digitalis-like factors in pregnancy-induced hypertension. Hypertension 10:184–186

    Article  Google Scholar 

  131. Mohmand B, Malhotra DK, Shapiro JI (2005) Uremic cardiomyopathy: role of circulating digitalis like substances. Front Biosci 10:2036–2044

    Article  CAS  PubMed  Google Scholar 

  132. McDonough AA, Leong PK, Yang LE (2003) Mechanisms of pressure natriuresis: how blood regulates renal sodium transport. Ann N Y Acad Sci 986:669–677

    Article  CAS  PubMed  Google Scholar 

  133. Cai H, Wu L, Qu W et al (2007) Regulation of apical NHE3 trafficking by ouabain-induced activation of basolateral Na+-K+-ATPase. Am J Physiol Cell Physiol 294:C555–C563

    Article  PubMed  CAS  Google Scholar 

  134. Liu J, Yan Y, Liu L et al (2011) Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt sensitive hypertension. J Biol Chem 286:22806–22813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Oweis S, Wu L, Kiela PR et al (2006) Cardiac glycoside downregulates NHE3 activity and expression in LLC-PK1 cells. Am J Physiol Renal Physiol 290:F997–F1008

    Article  CAS  PubMed  Google Scholar 

  136. Arnaud-Batista FJ, Costa GT, Oliviera IM et al (2012) Natriuretic effect of bufalin in isolated rat kidneys involves activation of Na+-K+-ATPase-Src kinase pathway. Am J Physiol Renal Physiol 302:F959–F966

    Article  CAS  PubMed  Google Scholar 

  137. Loreaux EL, Kaul B, Lorenz JN et al (2008) Ouabain-sensitive alpha1 Na, K-ATPase enhances natriuretic response to saline load. J Am Soc Nephrol 19:1947–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kennedy DJ, Elkareh J, Shidyak A et al (2007) Partial nephrectomy as a model for uremic cardiomyopathy in mice. Am J Physiol Renal Physiol 294:F450–F454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Haller ST, Kennedy DJ, Shidyak A et al (2012) Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am J Hypertens 25:690–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Haller ST, Drummond CA, Yan Y et al (2014) Passive immunization against marinobufagenin attenuates renal fibrosis and improves renal function in experimental renal disease. Am J Hypertens 27:603–609

    Article  CAS  PubMed  Google Scholar 

  141. Liu J, Kennedy DJ, Yan Y et al (2012) Reactive oxygen species modulation of Na/K-ATPase regulates fibrosis and renal proximal tubular sodium handling. Int J Nephrol 2012:381320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Fedorova LV, Raju V, El-Okdi N et al (2009) The Cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial to mesenchymal transition. Am J Physiol Renal Physiol 296:F922–F934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tian J, Shidyak A, Periyasamy SM et al (2009) Spironolactone attenuates experimental uremic cardiomyopathy by antagonizing marinobufagenin. Hypertension 54:1313–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Banerjee, M., Xie, Z. (2016). Na/K-ATPase and Its Role in Signal Transduction. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_2

Download citation

Publish with us

Policies and ethics