Skip to main content
Log in

Protective effects of ascorbic acid, dl-α-tocopherol acetate, and sodium selenate on ethanol-induced liver damage of rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, the effect of a combination of vitamin C (ascorbic acid), vitamin E (dl-α-tocopherol acetate), and selenium (sodium selenate) on ethanol-induced liver damage in rats was investigated, morphologically and biochemically. The ethanol-induced injury was produced by the administration of 1 mL of absolute ethanol to each rat. Animals received vitamin C (250 mg/kg), vitamin E (250 mg/kg), and selenium (0.5 mg/kg) (ViCESe) for 3 d 1 h prior to the administration of absolute ethanol. In the liver of the animals given ethanol, the degenerative changes such as extreme hyperemia, vacuolization in cells of portal areas, a dilation in sinusoids, mononuclear cell infiltration, a swelling in cisternae of granular endoplasmic reticulum and in mitochondrial cristae, an increase in smooth endoplasmic reticulum, many lipid vacuoles were observed both light and electron microscopically. A similar structure was usually distinguished when compared with control animals, in rats given ethanol+ViCESe. In this group, the findings indicating cellular damage were either not observed at all or were decreased. In the group administered ethanol, a reduction of the blood glutathione (GSH) level and increases in serum values of alanine aminotranserase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and γ-glutamyl transferase (GGT) activities were observed, whereas in the control group, the reverse was found to occur. On the other hand, in the group in which ethanol+ViCESe was administered, it was observed that the blood GSH value and serum ALP and ALT activities increased and serum AST, LDH, and GGT activities decreased. As a result, the present study indicates that ViCESe because of their antioxidant activity against ethanol damage have a protective effect on the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Kanbak, M. Inal, and C. Baycu, Ethanol-induced hepatotoxicity and protective effect of betaine, Cell Biochem. Funct. 19, 281–285 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. I. Fridovich, Oxygen radicals from acetaldehyde, Free Radical Biol. Med. 7, 557–558 (1989).

    Article  CAS  Google Scholar 

  3. T. Zima, L. Fialova, O. Mestek, et al., Oxidative stress, metabolism of ethanol and alcohol-related diseases, J. Biomed. Sci. 8, 59–70 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. M. Adachi and H. Ishii, Role of mitochondria in alcoholic liver injury, Free Radical Biol. Med. 32, 487–491 (2002).

    Article  CAS  Google Scholar 

  5. E. C. Schlorff, K. Husain, and S. M. Somani, Dose- and time-dependent effects of ethanol on plasma antioxidant system in rat, Alcohol 17, 97–105 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. D. J. Tuma, Role of malondialdehyde-acetaldehyde adducts in liver injury, Free Radical Biol. Med. 32, 303–308 (2002).

    Article  CAS  Google Scholar 

  7. R. Polavarapu, D. R. Spitz, J. E. Sim, et al., Increased lipid peroxidation and impaired antioxidant enzyme function is associated with pathological liver injury in experimental alcoholic liver disease in rats fed diets high in corn oil, and fish oil, Hepatology 27, 1317–1323 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. M. V. Suresh, C. V. S. Kumar, J. J. Lal, et al., Impact of massive ascorbic acid supplementation on alcohol induced oxidative stress in guinea pigs, Toxicol. Lett. 104, 221–229 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. P. Navasumrit, T. H. Ward, N. C. F. Dodd, et al., Ethanol-induced free radicals and hepatic DNA strand breaks are prevented in vivo by antioxidants: effects of acute and chronic ethanol exposure, Carcinogenesis 21, 93–99 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. T. Kawase, S. Kato, and C. S. Lieber, Lipid peroxidation and antioxidant defense systems in rat liver after chronic ethanol feeding, Hepatology 10, 815–821 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. D. A. Stoyanovsky, D. Wu, and A. I. Cedrebaum, Intraction of hydroxyethyl radical with glutathione, ascorbic acid and α-tocopherol, Free Radical Biol. Med. 24, 132–138 (1998).

    Article  CAS  Google Scholar 

  12. S. Warren, S. Patel, and C. M. Kapron, The effect of vitamin E exposure on cadmium toxicity in mouse embryo in vitro, Toxicology 142, 119–126 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. G. N. Schrauzer, Anticarcinogenic effect of selenium, Cell Mol. Life Sci. 57, 1864–1873 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. R. Nordmann, Alcohol and antioxidant systems, Alcohol Alcohol. 29, 513–522 (1994).

    PubMed  CAS  Google Scholar 

  15. E. Beutler, O. Duron, and B. M. Kelly, Improved method for the determination of blood glutathione, J. Lab. Clin. Med. 61, 882–888 (1963).

    PubMed  CAS  Google Scholar 

  16. H. Rouach, V. Fataccioli, M. Gentil, et al., Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology, Hepatology 25, 351–355 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. C. M. Macdonald, J. Dow, and M. R. Moore, A possible protective role for sulphydryl compounds in acute alcoholic liver injury, Biochem. Pharmacol. 26, 1529–1531 (1977).

    Article  PubMed  CAS  Google Scholar 

  18. G. M. Kostner, D. Otti, M. Jauhiainen, et al., Human plasma phospholipids transfer protein accelerates exchange/transfer of α-tocopherol between lipoproteins and cells, Biochem. J. 305, 659–667 (1995).

    PubMed  CAS  Google Scholar 

  19. E. Skrzdlewska and R. Farbiszewski, Lipid peroxidation and antioxidant status in the liver erythrocytes, and serum of rats after methanol intoxication, J. Toxicol. Environ. Health 53, 637–649 (1999).

    Google Scholar 

  20. M. Naziroğlu, N. Dilsiz, and M. Cay, Protective role of intraperitoneally administered vitamin C and E selenium on the levels of lipid peroxidation in the lens of rats made diabetic with streptozotocin, Biol. Trace Element Res. 70, 223–232 (1999).

    Google Scholar 

  21. N. R. Di Luzio and A. D. Hartman, Role of lipid peroxidation in the pathogenesis of the ethanol-induced fatty liver, Fed. Proc. 26, 1436–1442 (1967).

    PubMed  Google Scholar 

  22. H. Esterbauer and P. Ramos, Chemistry and pathophysiology of oxidation of LDL, Rev. Physiol. Biochem. Pharmacol. 127, 31–64 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. N. I. Krinsky, Antioxidant functions of carotenoids, Free Radical Biol. Med. 7, 617–635 (1989).

    Article  CAS  Google Scholar 

  24. R. F. Del Maestro, H. H. Thaw, J. Bjork, et al., Free radicals as mediators of tissue injury, Acta Physiol. Scand. 492(suppl.), 43–57 (1980).

    Google Scholar 

  25. A. W. S. S. Salim, Role of oxygen-derived free radicals in mechanism of acute and chronic duodenal ulceration in the rat, Dig. Dis. Sci. 35, 73–79 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. A. P. Bautista and J. J. Spitzer, Acute ethanol intoxication stimulates superoxide anion production by in situ perfused rat liver, Hepatology 15, 892–898 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. A. Masini, D. Ceccarelli, D. Gallesi, et al., Lipid hydroperoxide induced mitochondrial dysfunction following acute ethanol intoxication in rats: the critical role for mitochondrial reduced glutathione, Biochem. Pharmacol. 47, 217–224 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. T. Hirano, N. Kaplowitz, H. Tsukamoto, et al., Hepatic mitochondrial glutathione depletion and progression of experimental alcoholic liver disease in rats, Hepatology 16, 1423–1427 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. C. C. Cunningham, W. E. Coleman, and P. I. Spach, The effects of chronic ethanol consumption on hepatic mitochondrial energy metabolism, Alcoholism 25, 127–136 (1990).

    CAS  Google Scholar 

  30. C. V. Smith, D. P. Jones, T. M. Guenther, et al., Compartmentation of glutathione: Implications for the study of toxicity and disease, Toxicol. Appl. Pharmacol. 140, 1–12 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. O. Niemela, S. Parkkila, S. Yla-Herttuala, et al., Sequential acetaldehyde production, lipid peroxidation and fibrogenesis in micropig model of alcohol-induced liver disease, Hepatology 24, 1208–1214 (1995).

    Article  Google Scholar 

  32. W. W. Souba and D. W. Wilmore, Postoperative alteration of arteriovenous exchange of amino acids across the gastrointestinal tract, Surgery 94, 342–350 (1983).

    PubMed  CAS  Google Scholar 

  33. C. Coundary, M. J. Richard, H. Faure, et al., Blood and liver lipid peroxide status after chronic ethanol administration in rats, Clin. Chim. Acta 219, 35–45 (1993).

    Article  Google Scholar 

  34. B. Halliwell, Drug antioxidant effect: a basis for drug selection? Drugs 42, 569–605 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozdil, S., Bolkent, Ş., Yanardag, R. et al. Protective effects of ascorbic acid, dl-α-tocopherol acetate, and sodium selenate on ethanol-induced liver damage of rats. Biol Trace Elem Res 97, 149–161 (2004). https://doi.org/10.1385/BTER:97:2:149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:97:2:149

Index Entries

Navigation