Skip to main content
Log in

Metallic dental material biocompatibility in osteoblastlike cells

Conetation with metal ion release

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Ions released from metallic dental materials used in orthodontic appliances could induce undesirable effects on cells and tissues. This study evaluates the biocompatibility of two of the most labile components of metallic dental alloys on osteoblastlike cells. The influence of protein and ions on metal dissolution properties is also investigated using different electrolyte solutions. Morphological alterations, cell growth, and differentiation of osteoblasts were assessed after exposure to pure metals (Ag, Cu, Pd, Au) and Ni−Ti alloy and correlated with the kinetics of elements released into the culture media. Results showed that Cu and Ag were the most cytotoxic elements and the other metals were biocompatible with the osteoblasts. The parameters of biocompatibility were correlated with the levels of ions detected into the culture media. Metal ions induced cell death through early mitosis arrest, apoptotic phenomena, and necrotic processes. Voltammograms showed that anions and proteins interfered in the corrosion process. Fetal bovine serum (FBS) strongly affected the electrochemical process, decreasing the oxidation rate of the metals. In conclusion, copper and silver ions showed a time-dependent low biocompatibility, which correlated with the concentration of released ions. The dissolution of the metallic materials was dependent on the composition of the simulated biological media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Wataha, Biocompatibility of dental casting alloys: a review, J. Prosthet. Dent. 83, 223–234 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. R. G. Craig, Restorative Dental Materials, Mosby-YearBook, St Louis, MO, pp. 146–153 and 387–389 (1997).

    Google Scholar 

  3. G. Schmalz, H. Langer, and H. Schweikl, Cytotoxicity of dental alloy extracts and corresponding metal salts solutions, J. Dent. Res. 77 1772–1778 (1998).

    PubMed  CAS  Google Scholar 

  4. J. C. Wataha, C. T. Malcolm, and C. T. Hanks Correlation between cytotoxicity and the elements released by dental casting alloys, Int. J. Prosthodont. 8, 9–14 (1995).

    PubMed  CAS  Google Scholar 

  5. N. C. Partridge, D. Alcorn, V. P. Michelangeli, et al., Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin, Cancer Res. 43, 4308–4312 (1983).

    PubMed  CAS  Google Scholar 

  6. L. D. Quarles, D. A. Yahay, L. W. Lever, et al., Distinct proliferative and differentiated stages of murine MC3T3E1 cells in culture an in vitro model of osteoblast development, J. Bone Miner. Res. 7, 683–692 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. A. Kapanen, J. Ilvesaro, A. Danilov, et al., Behaviour of nitinol in osteoblast-like ROS-17 cell cultures, Biomaterials 23, 645–650 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. R. L. W. Messer, S. Bishop, and L. C. Lucas, Effects of metallic ion toxicity on human gingival fibroblasts morphology, Biomaterials 20, 1647–1657 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. V. Grill, M. A. Sandrucci, R. Di Lenarda, et al., Biocompatibility evaluation of dental metal alloys in vitro: Expression of extracellular matrix molecules and its relationship to cell proliferation rates, J. Biomed. Mater. Res. 52, 479–487 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. P. Locci, L. Marinucci, C. Lilli, et al., Biocompatibility of alloys used in orthodontics evaluated by cell culture tests. J. Biomed. Mater. Res. 51, 561–568 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. J. C. Wataha, C. T. Hanks, and R. G. Craig, The in vitro effects of metal cations on eukaryotic cell metabolism, J. Biomed. Mater. Res. 25, 1133–1149 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. M. C. Cortizo, M. A. Fernández Lorenzo de Mele, and A. M. Cortizo, In vitro evaluation of biocompatibility of dental metal materials on osteoblast cells in culture, in Metal Ions in Biology and Medicine L. Khassanova, Ph. Collery, I. Maymard, Z. Khassanova, and J-C. Étienne, eds., John Libbey Eurotext, Paris Vol. 7, pp. 149–153 (2002).

    Google Scholar 

  13. A. Schedle, P. Samorapoompichit, W. Fureder, et al., Metal ion-induced toxic histamine release from human basophils and mast cells, J. Biomed. Mater. Res. 39, 560–567 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. M. Kaga, N. S. Seale, T. Hanawa, et al., Cytotoxicity of amalgams alloys and their elements and phases, Dent. Mater. 7, 68–72 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. D. F. Williams, I. N. Askill, and R. Smith, Protein adsorption and desorption phenomena on clean metal surfaces, J. Biomed. Mater. Res., 19, 313–320 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. R. L. Williams and D. F. Williams, Albuminum adsorption on metal surfaces, Biomaterials 9, 206–212 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. J. C. Wataha, S. K. Nelson, and P. E. Lockwood, Elemental release from dental casting alloys into biological media with and without proteins Dent. Mater. 17, 409–414 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. K. Merrit, S. A. Brown, and N. A. Sharkey, The binding of metal stals and corrosion products to cells and proteins in vitro, J. Biomed. Mater. Res. 18, 1005–1015 (1984).

    Article  Google Scholar 

  19. M. A. Khan, R. L. Williams, and D. F. Williams, The corrosion behaviour of Ti−6Al-4V, Ti−6Al−7Nb and Ti−13Nb−13Zr in protein solutions, Biomaterials 20, 631–637 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. K. Endo, Chemical modification of metallic implant surfaces with biofunctional proteins (Part 2). Corrosion resistance of a chemically midified NiTi alloy, Dent. Mater. J. 14, 199–210(1995).

    PubMed  CAS  Google Scholar 

  21. F. J. Gil, L. A. Sánchez, A. Espias, et al., In vitro corrosion behaviour and metallic ion release of different prosthodontic alloys, Int. Dent. J. 49, 361–367 (1999).

    PubMed  CAS  Google Scholar 

  22. M. A. Fernández L de Mele and G. Duffó, Tarnishing and corrosion of silver-based casting alloys in synthetic salivas of different compositions, J. Appl. Electrochem. 32, 157–164 (2002).

    Article  Google Scholar 

  23. M. A. Fernández L de Mele and M. C. Cortizo, Electrochemical behaviour of titanium in fluoride-containing saliva, J. Appl. Electrochem. 30, 95–100 (2000).

    Article  Google Scholar 

  24. H. J. Mueller, The binding of corroded metallic ions to salivary-type proteins, Biomaterials 4, 66–72 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. International Standards Organization, Biological evaluation of medical devices. Part 5: Tests for cytotoxicity: in vitro methods ISO 10993-5-(1997).

  26. A. M. Cortizo and S. B. Etcheverry, Vanadium derivatives act as growth factor-mimetic compounds upon differentiation and proliferation of osteoblast-like UMR106 cells, Mol. Cell. Biochem. 145, 97–102 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. A. D. McCarthy, S. B. Etcheverry, L. Bruzzone, et al., Effects of advanced glycation end-products on the proliferation and differentiation of osteoblast-like cells, Mol. Cell. Biochem. 170, 43–51 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. M. S. Cortizo, J. L. Allesandini, S. B. Etcheverry, et al., A vanadium/aspirin complex controlled release using a poly(β-propiolactone) film. Effects on osteosarcoma cells. J. Biomater. Sci. Polym. 12, 945–960 (2001).

    Article  CAS  Google Scholar 

  29. G. S. Stein and J. B. Lian, Molecular mechanism mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype, Endocr. Rev. 14, 424–442 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. M. Bradford, Rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. M. C. Cortizo and M. A. Fernández L de Mele, Preliminary characterization of thin biofilms by optical microscopy, Biofouling 15, 253–260 (2000).

    Article  Google Scholar 

  32. M. A. Fernández Lorenzo de Mele, R. C. Salvarezza, V. D. Vázquez Moll, et al., Kinetics and mechanism of silver chloride electroformation during the localized electrodissolutions of silver in solutions containing chloride, J. Electrochem. Soc. 133, 746–752 (1986).

    Article  Google Scholar 

  33. A. M. Cortizo, L. Bruzzone, S. Molinuevo, et al., A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines, Toxicology 147, 89–99 (2000).

    Article  PubMed  CAS  Google Scholar 

  34. A. M. Cortizo, M. Caporossi, G. Lettieri, et al., Vanadate-induced nitric oxide production: role in osteoblast growth and differentiation, Eur. J. Pharmacol. 400, 279–285 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. L. D. Tomei and F. O. Cope (eds.), Current Communications in Cellular and Molecular Biology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Vol. 3 (1991).

    Google Scholar 

  36. D. Granchi, E. Cenni, G. Ciapetti, et al., Cell death induced by metal ions: necrosis or opoptosis? J. Mater. Sci.: Mater. Med. 9, 31–37 (1998).

    Article  CAS  Google Scholar 

  37. P. Nicotera, M. Leist, and E. Ferrando-May, Apoptosis and necrosis: different execution of the same death, Biochem. Soc. Symp. 66, 69–73 (1999).

    PubMed  CAS  Google Scholar 

  38. S. Van Cruchten and W. Van den Broeck, Morphological and biochemical aspects of apoptosis, oncosis and necrosis, Anat. Histol. Embryol. 31, 214–223 (2002).

    Article  PubMed  Google Scholar 

  39. P. S. Stewart, A review of experimental measurements of effective diffuse permeabilities and effective diffusion coefficients in biofilms, Biotechnol. Bioeng. 59, 261–272 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. Y. Mao, W. Wei, H. Peng, et al., Monitoring for adsorption of human serum albumin and bovine serum albumin onto bare and polystyrene-modified silver electrodes by quartz crystal impedance analysis, J. Biotechnol. 89, 1–10 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. A. Klinger, D. Steinberg, D. Kohavi, et al., Mechanism of adsorption of human albumin titanium in vitro. J. Biomed. Mater. Res. 36, 387–392 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortizo, M.C., de Mele, M.F.L. & Cortizo, A.M. Metallic dental material biocompatibility in osteoblastlike cells. Biol Trace Elem Res 100, 151–168 (2004). https://doi.org/10.1385/BTER:100:2:151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:100:2:151

Index Entries

Navigation