Skip to main content
Log in

Measurement of bubble size distribution in protein foam fractionation column using capillary probe with photoelectric sensors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bubble size is a key variable for predicting the ability to separate and concentrate proteins in a foam fraction ation process. It is used to characterize not only the bubble-specific interfacial a rea but also coalescence of bubbles in the foam phase. This article describes the development of a photoelectric method for measuring the bubble size distribution in both bubble and foam columns for concentrating proteins. The method uses a vacuum to withdraw a stream of gas-liquid dispersion from the bubble or foam column through a capillary tube with a funnel-shaped inlet. The resulting sample bubble cylinders are detected, and their lengths are calculated by using two pairs of infrared photoelectric sensors that are connected with a high-speed data acquisition system controlled by a microcomputer. The bubble size distributions in the bubble column 12 and 1 cm below the interface and in the foam phase 1 cm above the interface are obtained in a continuous foam fractionation process for concentrating ovalbumin. The effects of certain operating conditions such as the feed protein concentration, superficial gas velocity, liquid flow rate, and solution pH are investigated. The results may prove to be helpful in understanding the mechanisms controlling the foam fractionation of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

internal cross-sectional area of capillary tube (m2)

d b :

bubble diameter (mm)

d c :

inside diameter of capillary (m)

l b :

length of bubble slug (m)

l c :

capillary tube length (m)

p :

pressure at detection point of capillary (Pa)

p A, po :

pressure at sampling point of dispersion (Pa)

P v :

pressure at capillary tube outlet, or vacuum pressure (Pa)

S b :

cross-sectional area of a bubble slug (m2)

S k :

cross-sectional area of a capillary tube (m2)

t *b :

time for bubble slug to pass detection point on capillary tube (s)

U *b :

bubble velocity at detection point (m/s)

V b :

bubble volume in dispersion (m3)

z :

distance between point of observation and outlet of capillary tube (m)

μ:

dynamic viscosity (Newton-seconds/m)

ρ:

fluid density (kg/m)

σ:

surface tension (N/m)

References

  1. Greaves, M. and Kobbacy, K. A. H. (1984), Chem. Eng. Res. Des. 62, 3–12.

    CAS  Google Scholar 

  2. Weiland, P., Brentrup, L., and Onken, U. (1980), German Chem. Eng. 3, 269–302.

    Google Scholar 

  3. Barigou, M. and Greaves, M. (1991), Meas., Sci. Technol. 2, 318–326.

    Article  CAS  Google Scholar 

  4. Gao, D., Xu, Z., and Zhang, J. (1986), J. East China Inst. Chem. Technol. 12 (Suppl.), 115–126 (in Chinese).

    Google Scholar 

  5. Yu, B., Deng, X., and Shi, Y. (1988), J. East China Inst. Chem. Technol. 14(5), 588–596 (in Chinese).

    CAS  Google Scholar 

  6. Jiang, H. and Gao, D. (1988), J. East China Inst. Chem. Technol. 14(5), 597–604 (in Chinese).

    CAS  Google Scholar 

  7. Zhang, Z., Dai, G., and Chen, M. (1989), J. Chem. Eng. Chim. Univ. 3(2), 42–49.

    CAS  Google Scholar 

  8. Uraizee, F. and Narsimhan, G. (1995), in Bioseparation Processes in Foods, Singh, R. K. and Rivzi, S. S. H., eds., Marcel Dekker, New York, pp. 175–225.

    Google Scholar 

  9. Uraizee, F. and Narsimhan, G. (1996), Biotechnol. Bioeng. 51, 384–398.

    Article  CAS  Google Scholar 

  10. Calvert, J. R. and Nezhati, K. (1987), Int. J. Heat Fluid Flow (8(2), 102–106.

    Article  CAS  Google Scholar 

  11. Magrabi, S. A., Dlugogorski, B. Z., and Jameson, G. J. (1999) Chem. Eng. Sci. 54, 4007–4022.

    Article  CAS  Google Scholar 

  12. Brown, L., Narsimhan, G., and Wankat, P. C. (1990), Biotechnol. Bioeng. 36, 947–959.

    Article  CAS  Google Scholar 

  13. Wong, C. H., Hossain, M. D., Stanley, R. A., and Davies, C. E. (1996), in CHEMECA'96, 24th Australian and New Zealand Chemical Engineering Conference Proceedings, vol. 4, Sydney, Australia, pp. 105–110.

  14. Wilde, P. J. (1996) J. Colloid Interface 178, 733–739.

    Article  CAS  Google Scholar 

  15. Bae, J. H. and Tavlarides, L. L. (1989), AIChE J. 35(7), 1073–1084.

    Article  CAS  Google Scholar 

  16. Wallis, G. B. (1969), in One-Dimensional Two-Phase Flow, McGraw-Hill, New York, pp. 212–314.

    Google Scholar 

  17. Bradford, M. M. (1976), Analyt. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  18. Lage, P. L. C. and Espósito, R. O. (1999), Powder Technol. 101, 142–150.

    Article  CAS  Google Scholar 

  19. Brown, A. K., Kaul, A., and Varley, J. (1999), Biotechnol. Bioeng. 62(3), 278–290.

    Article  CAS  Google Scholar 

  20. Tanner, R. D., Parker, T., Ko, S., Ding, Y., Loha, V., Du, L., and Prokop, A. (2000), Appl. Biochem. Biotechnol. 84–86, 835–842.

    Article  Google Scholar 

  21. Hammershøj, M., Prins, A., and Qvist, K. B. (1999), J. Sci. Food Agric. 79, 859–868.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Tanner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, L., Ding, Y., Prokop, A. et al. Measurement of bubble size distribution in protein foam fractionation column using capillary probe with photoelectric sensors. Appl Biochem Biotechnol 91, 387–404 (2001). https://doi.org/10.1385/ABAB:91-93:1-9:387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:91-93:1-9:387

Index Entries

Navigation