Skip to main content
Log in

Lignin peroxidase production by Streptomyces viridosporus T7A

Use of corn oil as a carbon source

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignin peroxidase (LiP) production cost should be reduced to justify its use in the control of environmental pollution. In this work, we studied the enzyme production by Streptomyces viridosporus T7A using glucose or corn oil as a carbon source having 0.65% yeast extract as a nitrogen source. Enzyme activity, observed using either 0.65% glucose or corn oil at 0.1, 0.5, and 1.0% concentration, was 300, 150, 300, and 200 U/L, respectively. Although higher enzyme activity was obtained in both media containing 0.65% glucose and 0.5% corn oil, the use of corn oil resulted in a better LiP stability. When combined carbon sources were used, higher values of enzyme activity (360, 350, and 225 U/L) were observed in media with 0.65% glucose and supplemented with 0.1, 0.5, and 1.0% corn oil, respectively. Although the presence of both glucose and 0.5% corn oil is favorable for LiP production, satisfactory results in terms of enzyme production and stability could be also observed using 0.5% corn oil as a sole carbon source, which may lead to reduced production costs of the LiP enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eriksson, K.-E. (1993), J. Biotechnol. 30, 149–158.

    Article  PubMed  CAS  Google Scholar 

  2. Schoemaker, H. E. and Leisola, M. S. A. (1990), J. Biotechnol. 13, 101–109.

    Article  CAS  Google Scholar 

  3. Tien, M. and Kirk, T. K. (1983), Burds. Science 221, 661–663.

    Article  ADS  CAS  Google Scholar 

  4. Ramachandra, M., Crawford, D. L., and Hertel, G. (1988), Appl. Environ. Microbiol. 54, 3057–3063.

    PubMed  CAS  Google Scholar 

  5. Odier, E. and Artaud, I. (1992), in Microbial Degradation of Natural Products, Winkelmann, G., ed., VCH, Germany, pp. 161–191.

    Google Scholar 

  6. Burdsall, H. H. and Eslyn, W. E. (1974), Mycotaxon. 1, 123–133.

    Google Scholar 

  7. Farrel, R. L. (1987), NY Acad. Sci. 501, 150–158.

    Article  Google Scholar 

  8. Crawford, D. L. (1978), Appl. Environ. Microbiol. 35, 1041–1045.

    PubMed  CAS  Google Scholar 

  9. Crawford, D. L., Barder, M. J., Pometto, A. L., III, and Crawford, R. L. (1982), Arch. Microbiol. 131, 140–145.

    Article  CAS  Google Scholar 

  10. Iqbal, M., Mercer, D. K., Miller, P. G. G., and McCarthy, A. J. (1994), Microbiology 140, 1457–1465.

    Article  CAS  Google Scholar 

  11. Mercer, D. K., Iqal, M., Miller, P. G. G., and McCarthy, A. J. (1996), Appl. Environ. Microbiol. 62, 2186–2190.

    PubMed  CAS  Google Scholar 

  12. Zimmerman, W. (1990), J. Biotechnol. 13, 119–130.

    Article  Google Scholar 

  13. Mileski, G. J., Bumpus, J. A., Jurek, M. A., and Aust, S. D. (1988), Appl. Environ. Microbiol. 54, 2885–2889.

    PubMed  CAS  Google Scholar 

  14. Winter, B., Fiechter, A., and Zimmerman, W. (1991), Appl. Environ. Microbiol. 57, 2858–2863.

    PubMed  CAS  Google Scholar 

  15. Haemmerli, S. D., Leisola, M. S. A., and Fiechter, A. (1986), FEMS Microbiol. Lett. 35, 33–36.

    Article  CAS  Google Scholar 

  16. Spiker, J. K., Crawford, D. L., and Thiel, E. C. (1992), Appl. Environ. Microbiol. 37, 518–523.

    CAS  Google Scholar 

  17. Pasti-Grigsby, M. B., Paszczynski, A., Goszczynski, S., Crawford, D. L., and Crawford, R. L. (1992), Appl. Environ. Microbiol. 58, 3605–3613.

    PubMed  CAS  Google Scholar 

  18. Hernandezperez, G., Goma, G., and Rols, J. L. (1997), Biotechnol. Lett. 19, 285–289.

    Article  CAS  Google Scholar 

  19. Gauger, W. K., MacDonald, J. M., Adrian, N. R., Matthees, D. P., and Walgenbach, D. D. (1986), Arch. Environ. Microbiol. 15, 137–141.

    CAS  Google Scholar 

  20. Gunner, H. B. and Zuckman, B. M. (1968), Nature (London) 217, 1183–1184.

    Article  ADS  CAS  Google Scholar 

  21. Zerbini, J. E. (1994), M. Sc Thesis, Coppe, URFJ, Rio de Janeiro, Brasil.

  22. Sztajer, H., Maliszewska, I., and Wieczorek, J. (1988), Enzyme Microbiol. Technol. 10, 492–497.

    Article  CAS  Google Scholar 

  23. Bormann, C., Nikoleit, K., Potgeter, M., Tesch, C., Sommer, P., and Goetz, F. (1993), Dechema. Monographics 237–247.

  24. Park, Y. S., Monose, I., Tsunoda, K., and Okabe, M. (1994), Appl. Microbiol. Biotechnol. 40, 773–779.

    Article  PubMed  CAS  Google Scholar 

  25. Ettler, P. (1987), Acta Biotechnol. 7, 3–8.

    Article  CAS  Google Scholar 

  26. Hopwood, D. A., Bibb, M. B., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H. M., Lydiate, D. J., Smith, C. P., Ward, J. M., and Schrempf, H. (1985), in Genetic Manipulation of Streptomyces: A Laboratory Manual, The John Innes Foundation, Norwich, CT, Chapter 1, pp. 3–5.

    Google Scholar 

  27. McCarthy, A. J. and Broda, P. (1984), J. Gen. Microbiol. 130, 2905–2913.

    CAS  Google Scholar 

  28. Pometto, A. L., III and Crawford, D. L. (1986), Appl. Environ. Microbiol. 51, 171–179.

    PubMed  CAS  Google Scholar 

  29. Ishida, A., Futamura, N., and Matsusaka, T. (1987), J. Gen. Appl. Microbiol. 33, 27–32.

    CAS  Google Scholar 

  30. Pasti, M. B., Hagen, S. R., Korus, R. A., and Crawford, D. L. (1991), Appl. Microbiol. Biotechnol. 34, 661–667.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elba P. S. Bon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottschalk, L.M.F., Macedo, J.M.B. & Bon, E.P.S. Lignin peroxidase production by Streptomyces viridosporus T7A. Appl Biochem Biotechnol 79, 771–778 (1999). https://doi.org/10.1385/ABAB:79:1-3:771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:79:1-3:771

Index Entries

Navigation