Skip to main content
Log in

Production of ethanol from cellulosic biomass by Clostridium thermocellum SS19 in submerged fermentation

Screening of nutrients using Plackett-Burman design

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plackett-Burman design, a statistical methodology, was used to screen 23 nutrients belonging to three categories—carbon, nitrogen, and salt/mineral sources—for the production of ethanol from cellulosic biomass by Clostridium thermocellum SS19 in an aerobic submerged fermentation. In this design, just n number of experiments is required for screening n=1 variables. The experimental data were subjected to statistical analysis for calculating the regression coefficients and t-values. Filter paper, Solka Floc, corn steep liquor (CSL), cysteine HCl, magnesium chloride, and ferrous sulfate showed relatively higher regression coefficients on ethanol production and growth. Among the 23 nutrients screened, based on their performance in terms of product-promoting ability, availability, and cost, filter paper, CSL, cysteine HCl, magnesium chloride, and ferrous sulfate were identified as the most effective and, therefore, selected for inclusion in further optimization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Y. and Cheng, J. (2002), Bioresour. Technol. 83, 1–11.

    Article  CAS  Google Scholar 

  2. Lowe, S. E., Jain, M. K., and Zeikus, J. G. (1993), Microbiol. Rev. 57, 451–509.

    CAS  Google Scholar 

  3. Beguin, P. and Aubert, J. P. (1994), FEMS Microbiol. Rev. 13, 25–58.

    Article  CAS  Google Scholar 

  4. Lin, W. R., Peng, Y., Lew, S., Lee, C. C., Hsu, J. J., Hamel, J. F., and Demain, A. L. (1998), Tetrahedron Lett. 54, 15,915–15,925.

    CAS  Google Scholar 

  5. Stevenson, D. M. and Weimer, P. J. (2002), Appl. Microbiol. Biotechnol. 59, 721–726.

    Article  CAS  Google Scholar 

  6. Zertuche, L. and Zall, R. R. (1982), Biotechnol. Bioeng. 24, 57–68.

    Article  CAS  Google Scholar 

  7. Slapack, G. E., Russell, I., and Stewart, G. G. (1985), Project report submitted to division of Energy, NRCC No. 2441, pp. 1–404, Ottawa, ON.

  8. Lovitt, R. W., Kim, B. H., Shen, G. J., and Zeikus, J. G. (1988), CRC Crit. Rev. Biotechnol. 7, 107–186.

    CAS  Google Scholar 

  9. Lynd, L. R. (1989), Adv. Biochem. Eng./Biotechnol. 38, 1–52.

    CAS  Google Scholar 

  10. Bender, J., Vatcharapijarn, Y., and Jeffries, T. W. (1985), Appl. Environ. Microbiol. 49, 475–477.

    CAS  Google Scholar 

  11. Freier, D., Mothershed, C. P., and Wiegel, J. (1988), Appl. Environ. Microbiol. 54, 204–211.

    CAS  Google Scholar 

  12. Mori, Y. (1990), Appl. Environ. Microbiol. 56, 37–42.

    CAS  Google Scholar 

  13. Sai Ram, M. and Seenayya, G. (1991), World J. Microbiol. Biotechnol. 7, 372–378.

    Article  Google Scholar 

  14. Sai Ram, M., Rao, C. V., and Seenayya, G. (1991), World J. Microbiol. Biotechnol. 7, 272–275.

    Article  Google Scholar 

  15. Sato, K., Goto, S., Yonemura, K., Sekine, E., Okuma, T., Takagi, K., Hon-Nami, T., and Saiki, T. (1992), Appl. Environ. Microbiol. 58, 734–736.

    CAS  Google Scholar 

  16. Sudha Rani, K., Swamy, M. V., and Seenayya, G. (1996), Biotechnol. Lett. 18, 957–962.

    Article  Google Scholar 

  17. Rama Mohan Reddy, P., Reddy, G., and Seenayya, G. (1999), Bioprocess Eng. 21, 175–179.

    Google Scholar 

  18. Ramana Murthy, M. V. (1994), PhD thesis, Central Food Technological Research Institute, Mysore, India.

  19. Srinivas, M. R. S., Nagin Chnad, N., and Lonsane, B. K. (1994), Bioprocess Eng. 10, 139–144.

    CAS  Google Scholar 

  20. Plackett, R. L. and Burman, J. P. (1946), Biometrika 33, 305–325.

    Article  Google Scholar 

  21. Gresham, R. and Inamini, E. (1986), in Manual of Industrial Microbiology and Biotechnology, Demain, A. L. and Solomon, N. A., eds. American Society for Microbiology, Washington, DC, pp. 41–48.

    Google Scholar 

  22. Adriane, M. F. and Lacis, L. S. (1991), Biotechnol. Lett. 13, 113–118.

    Article  Google Scholar 

  23. Akhnazarova, S. and Kafarov, V. (1982), Experimental Optimization in Chemistry and Chemical Engineering, MIR Publishers, Moscow.

    Google Scholar 

  24. Strobel, R. J. and Nakatsukasa, W. M. (1993), J. Ind. Microbiol. 11, 121–127.

    Article  CAS  Google Scholar 

  25. Poorna, V. and Neelesh, R. S. (2001), J. Basic Microbiol. 41, 57–64.

    Article  Google Scholar 

  26. Weimer, P. J. and Zeikus, J. G. (1977), Appl. Environ. Microbiol. 33, 289–297.

    CAS  Google Scholar 

  27. Ramesh, B., Rama Mohan Reddy, P., Seenayya, G., and Reddy, G. (2001), Bioresour. Technol. 76, 169–171.

    Article  CAS  Google Scholar 

  28. Sudha Rani, K., Swamy, M. V., and Seenayya, G. (1998), Process Biochem. 33, 435–440.

    Article  Google Scholar 

  29. Ng, T. K., Weimer, P. J., and Zeikus, J. G. (1977), Arch. Microbiol. 114, 1–7.

    Article  CAS  Google Scholar 

  30. Venkateswaran, S. and Demain, A. L. (1986), Chem. Eng. Commun. 45, 53–60.

    CAS  Google Scholar 

  31. Johnson, E. A., Madia, A., and Demain, A. L. (1981), Appl. Environ. Microbiol. 41, 1060–1062.

    CAS  Google Scholar 

  32. Ng, T. K., Ben-Bassat, A., and Zeikus, J. G. (1981), Appl. Envron. Microbiol. 41, 1337–1343.

    CAS  Google Scholar 

  33. Lamed, R. and Bayer, E. A. (1988), in Biochemistry and Genetics of Cellulose Degradation, Aubert, J. P., Beguin, P., and Millet, J., eds. Academic, London, pp. 101–116.

    Google Scholar 

  34. Garcia-Martinez, D. V., Shinmyo, A., Madia, A., and Demain, A. L. (1980), Eur. J. Appl. Microbiol. Biotechnol. 9, 189–197.

    Article  CAS  Google Scholar 

  35. Tailliez, P., Girard, H., Millet, J., and Beguin, P., (1989), Appl. Environ. Microbiol. 55, 207–211.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balusu, R., Paduru, R.M.R., Seenayya, G. et al. Production of ethanol from cellulosic biomass by Clostridium thermocellum SS19 in submerged fermentation. Appl Biochem Biotechnol 117, 133–141 (2004). https://doi.org/10.1385/ABAB:117:3:133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:117:3:133

Index Entries

Navigation