Skip to main content
Log in

Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

One of the limiting factors restricting the effective and efficient bioconversion of softwood-derived lignocellulosic residues is the recalcitrance of the substrate following pretreatment. Consequently, the ensuing enzymatic process requires relatively high enzyme loadings to produce monomeric carbohydrates that are readily fermentable by ethanologenic microorganisms. In an attempt to circumvent the need for larger enzyme loadings, a simultaneous physical and enzymatic hydrolysis treatment was evaluated. A ball-mill reactor was used as the digestion vessel, and the extent and rate of hydrolysis were monitored. Concurrently, enzyme adsorption profiles and the rate of conversion during the course of hydrolysis were monitored. α-Cellulose, employed as a model substrate, and SO2-impregnated steam-exploded Douglas-fir wood chips were assessed as the cellulosic substrates. The softwood-derived substrate was further posttreated with water and hot alkaline hydrogen peroxide to remove >90% of the original lignin. Experiments at different reaction conditions were evaluated, including substrate concentration, enzyme loading, reaction volumes, and number of ball beads employed during mechanical milling. It was apparent that the best conditions for the enzymatic hydrolysis of α-cellulose were attained using a higher number of beads, while the presence of air-liquid interface did not seem to affect the rate of saccharification. Similarly, when employing the lignocellulosic substrate, up to 100% hydrolysis could be achieved with a minimum enzyme loading (10 filter paper units/g of cellulose), at lower substrate concentrations and with a greater number of reaction beads during milling. It was apparent that the combined strategy of simultaneous ball milling and enzymatic hydrolysis could improve the rate of saccharification and/or reduce the enzyme loading required to attain total hydrolysis of the carbohydrate moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyman, C. E. (1996), Handbook on Bioethanol-Production and Utilization, Taylor and Francis, Washington, DC.

    Google Scholar 

  2. Boussaid, A. and Saddler, J. N. (1999), Enzyme Microb. Technol. 24, 138–143.

    Article  CAS  Google Scholar 

  3. Ramos, L. P., Breuil, C., and Saddler, J. N. (1992), Appl. Biochem. Biotechnol. 34–35, 37–47.

    Google Scholar 

  4. Mansfield, S. D., Mooney, C., and Saddler, J. N. (1999), Biotechnol. Prog. 15, 804–816.

    Article  CAS  Google Scholar 

  5. Bungay, H. (1992), Enzyme Microb. Technol. 14, 501–507.

    Article  CAS  Google Scholar 

  6. Saddler, J. N., Brownell, H. H., Clermont, L. P. and Levitn, N. (1982), Biotechnol. Bioeng. 24, 1389–1402.

    Article  CAS  Google Scholar 

  7. Eklund, R., Glabe, M., and Zacchi, G. (1990), Enzyme Microb. Technol. 12, 225–228.

    Article  CAS  Google Scholar 

  8. Gregg, D. and Saddler, J. N. (1996), Biotechnol. Bioeng. 51, 375–383.

    Article  CAS  Google Scholar 

  9. Ryu, S. K. and Lee, J. M. (1983), Biotechnol. Bioeng. 25, 53–65.

    Article  CAS  Google Scholar 

  10. Kelsey, R. G. and Shafizadeh, F. (1980), Biotechnol. Bioeng. 22, 1025–1036.

    Article  CAS  Google Scholar 

  11. Maekawa, E. (1996), Wood Sci. Technol. 30, 133–139.

    Article  CAS  Google Scholar 

  12. Wu, M. M., Chang, K., Gregg, D. J., Boussaid, A., Beatson, R. P. and Saddler, J. N. (1999), Appl. Biochem. Biotechnol. 77–79, 47–54.

    Article  Google Scholar 

  13. Henley, R. G., Yang, R. Y. K. and Greenfield, P. F. (1980), Enzyme Microb. Technol. 2, 206–208.

    Article  CAS  Google Scholar 

  14. Katz, M. and Reese, E. T. (1968), Appl. Microbiol. 16, 419.

    CAS  Google Scholar 

  15. Millett, M. A., Baker, A. J., and Satter, L. D. (1976), Biotechnol. Bioeng. Symp. 6, 125.

    CAS  Google Scholar 

  16. Sidiras, D. K. and Koukios, E. G. (1989), Biomass 19, 289–306.

    Article  CAS  Google Scholar 

  17. Furcht, P. W. and Silla, H. (1990), Biotechnol. Bioeng. 35, 630–645.

    Article  CAS  Google Scholar 

  18. Ghose, T. K. (1969), Biotechnol. Bioeng. 11, 239–261.

    Article  CAS  Google Scholar 

  19. Neilson, M. J., Kelsey, R. G., and Shafizadeh, F. (1982), Biotechnol. Bioeng. 24, 293–304.

    Article  CAS  Google Scholar 

  20. Jones, E. O. and Lee, J. M. (1988), Biotechnol. Bioeng. 31, 34–40.

    Article  Google Scholar 

  21. Nakao, K., Funkunaga, K., Yasuda, Y., Tejima, Y., and Kimura, M. (1991), Kagaku Kogaku Ronbunshu 17, 882–889.

    CAS  Google Scholar 

  22. Sinitsyn, A. P., Gusakov, A. V., Davydkin, I. Y., Davydkin, V. Y., and Protas, O. V. (1993), Biotechnol. Lett. 15, 283–288.

    Article  CAS  Google Scholar 

  23. Mackie, K. L., Brownell, H. H. West, K. L., and Saddler, J. N. (1985), J. Wood Chem. Technol. 5, 405–425.

    CAS  Google Scholar 

  24. Boussaid, A., Esteghlalian, A. R., Gregg, D. J., Lee, K. H., and Saddler, J. N. (2000), Appl. Biochem. Biotechnol. 84–86, 693–705.

    Article  Google Scholar 

  25. Yang, B., Boussaid, A., Mansfield, S. D. and Saddler, J. N. (2002), Biotechnol. Bioeng. in press.

  26. Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.

    CAS  Google Scholar 

  27. TAPPI, Technical Association of the Pulp and Paper Industry (1998), Standard Methods, T-222 om-98, Atlanta, GA.

  28. TAPPI, Technical Association of the Pulp and Paper Industry (1991), Useful Methods, UM-250, Atlanta, GA, pp. 47,48.

  29. Breuil, C., Chan, M., Gilbert, M., and Saddler, J. N. (1992), Bioresour. Technol. 39, 139–142.

    Article  CAS  Google Scholar 

  30. Reese, E. Y. and Ryu, D. Y. (1980), Enzyme Microb. Technol. 2, 239–240.

    Article  CAS  Google Scholar 

  31. Bader, J., Bellgardt, K., Singh, A., Kumar, P., and Shugerl, K. (1992), Bioprocess. Eng. 7, 235–240.

    Article  CAS  Google Scholar 

  32. Medve, J., Karlsson, J., Lee, D., and Tjerneld, F. (1998), Biotechnol. Bioeng. 59, 621–634.

    Article  CAS  Google Scholar 

  33. Ooshima, H., Kurakake, M., Kato, J., and Harano, Y. (1991), Appl. Biochem. Biotechnol. 31, 253–266.

    CAS  Google Scholar 

  34. Ooshima, H., Burns, D. S., and Converse, A. O. (1990), Biotechnol. Bioeng. 36, 446–452.

    Article  CAS  Google Scholar 

  35. Lee, D., Yu, A. H. C., Wong, K. K. Y., and Saddler, J. N. (1994), Appl. Biochem. Biotechnol. 45–46, 407–415.

    Google Scholar 

  36. Converse, A. O., Ooshima, H., and Burns, D. S. (1990), Appl. Biochem. Biotechnol. 24–25, 67–73.

    Google Scholar 

  37. Cleresci, L. S., Sinitsyn, A. P., Saunders, A. M., and Bungay, H. R. (1985), Appl. Biochem. Biotechnol. 11, 433–443.

    Google Scholar 

  38. Yu, A. H. C., Lee, D., and Saddler, J. N. (1995), Biotechnol. Appl. Biochem. 21, 203–216.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn D. Mansfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mais, U., Esteghlalian, A.R., Saddler, J.N. et al. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Appl Biochem Biotechnol 98, 815–832 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:815

Index Entries

Navigation