Skip to main content
Log in

Modelling and simulation of cellulase adsorption and recycling during enzymatic hydrolysis of cellulosic materials

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Characteristics of cellulase adsorption on cellulosic substrates and their recycling during the hydrolysis of cellulose were studied. On the basis of the experimental data, a comprehensive model was set up comprising of sub-models for the enzyme adsorption, enzymatic hydrolysis and recycling of enzymes. The model equations consist of non-linear systems of ordinary differential and algebraic equations. The model parameters were identified by means of the experimental results of Singh et al. [1] and Bader et al. [2]. The simulation results with the model corresponded well with the experimental data. Thus, the good agreement between simulated and measured process variables indicates that the model is suitable for description of cellulase adsorption and recycling during hydrolysis of cellulosic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C g/l:

cellulose concentration

CB g/l:

cellobiose concentration

cb a U/g:

specific adsorbed cellobiase

cb am U/g:

maximum specific adsorbed cellobiase

cb f U/g:

specific free cellobiase

cb t U/g:

specific total cellobiase

ce a U/g:

specific adsorbed cellulase

en a U/g:

specific adsorbed endoglucanase

en am U/g:

maximum specific adsorbed endoglucanase

en f U/g:

specific free endoglucanase

en t U/g:

specific total endoglucanase

ex a U/g:

specific adsorbed exoglucanase

ex am U/g:

maximum specific adsorbed exoglucanase

ex f U/g:

specific free exoglucanase

ex t U/g:

specific total exoglucanase

Ex f U/l:

free exoglucanase

G g/l:

glucose concentration

k c g/U h:

rate constant of cellulose hydrolysis

K CB g/l:

constant of competitive inhibition by cellobiose (cellulose hydrolysis)

k CB 1/h:

rate constant of cellobiose hydrolysis

K cb U/g:

limitation constant of cellobiase adsorption

k cb 1/h:

rate constant of cellobiase adsorption

K en U/g:

limitation constant of endoglucanase adsorption

k en 1/h:

rate constant of endoglucanase adsorption

K ex U/g:

limitation constant of exoglucanase adsorption

k ex 1/h:

rate constant of exoglucanase adsorption

K G g/l:

constant of competitive inhibition by glucose (cellulose hydrolysis)

K ICB g/l:

constant of competitive inhibition by cellobiose (cellobiose hydrolysis)

K IG g/l:

constant of competitive inhibition by glucose (cellobiose hydrolysis)

S g/l:

substrate concentration

t h:

time

U cb U/g:

specific capacity of cellobiase loading on substrate

U en U/g:

specific capacity of endoglucanase loading on substrate

U ex U/g:

specific capacity of exoglucanase loading on substrate

References

  1. Singh, A.; Kumar, P. K. R.; Schügerl, K.: Adsorption and reuse of cellulases during saccharification of cellulosic materials. J. Biotechnol. 8 (1990) in press

  2. Bader, J.; Klingspohn, U.; Kruse, B.; Bellgardt, K.-H.; Schügerl, K.: Bioconversion of potato pulp — a by-product from the starch industry. Dechema Biotechnology Conferences Vol. 4, Weinheim: VCH Verlagsgesellschaft 1990 p. 851–854

    Google Scholar 

  3. Ghose, T. K.; Bisaria, V. S.: Studies on mechanism of enzymatic hydrolysis of cellulosic substances. Biotechnol. Bioeng. 21 (1979) 131–146

    Google Scholar 

  4. Ryu, D. D. Y.; Kim, C.; Mandels, M.: Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol. Bioeng. 26 (1984) 488–496

    Google Scholar 

  5. Mes-Hartree, M.; Hogan, C. M.; Saddler, J. N.: Recycle of enzymes and substrate following enzymatic hydrolysis of steam pretreated aspenwood. Biotechnol. Bioeng. 30 (1987) 558–564

    Google Scholar 

  6. Vallander, L.; Eriksson, K.-E.: Enzyme recirculation in saccharification of lignocellulosic materials. Enzyme Microb. Technol. 9 (1987) 714–720

    Google Scholar 

  7. Klyosov, A. A.; Mitkevich, O. V.; Sinitsyn, A. P.: Role of activity and adsorption of cellulases in the efficiency of the enzymatic hydrolysis of amorphous and crystalline cellulose. Biochemistry 25 (1986) 540–542

    Google Scholar 

  8. Chernoglazov, V. M.; Ermolova, O. V.; Klyosov, A. A.: Adsorption of high purity endo-1,4-β-glucanase from Trichoderma reesei on components of lignocellulosic materials: cellulose, lignin, and xylan. Enzyme Microb. Technol. 10 (1988) 503–507

    Google Scholar 

  9. Hogan, C. M.; Mes-Hartree, M.; Saddler, J. N.; Kushner, D. J.: Assessment of methods to determine minimal cellulase concentrations for efficient hydrolysis of cellulose. Appl. Microbiol. Biotechnol. 32 (1990) 614–620

    Google Scholar 

  10. Steiner, W.; Sattle, W.; Esterbauer, H.: Adsorption of Trichoderma reesei cellulase on cellulose: Experimental data and their analysis by different equations. Biotechnol. Bioeng. 32 (1988) 853–865

    Google Scholar 

  11. Stuart, J. Y.; Ristroph, D. L.: Analysis of cellulose-cellulase adsorption data: A fundamental approach. Biotechnol. Bioeng. 27 (1985) 1056–1059

    Google Scholar 

  12. Wilke, C. R.; Yang, R. D.; Sciamanna, A. F.; Freitas, R. P.: Raw materials evaluation and process development studies for the conversion of biomass to sugars and ethanol. Biotechnol. Bioeng. 23 (1981) 163–183

    Google Scholar 

  13. Fan, L. T.; Gharpuray, M. M.; Lee, Y. H.: Cellulose hydrolysis. Biotechnology Monographs, Berlin: Springer-Verlag 1987

    Google Scholar 

  14. Segel, J. H.: Enzyme kinetics. New York: Wiley and Sons 1975

    Google Scholar 

  15. Scheiding, W.; Thoma, M.; Ross, A.; Schügerl, K.: Modelling of the enzymatic hydrolysis of cellobiose and cellulose by a complex enzyme mixture of Trichoderma reesei QM9414. Appl. Microbiol. Biotechnol. 20 (1984) 176–182

    Google Scholar 

  16. Scheiding, W.; Thoma, M.; Ross, A.; Schügerl, K.: Modelling of the growth of Trichoderma reesei QM9414 on glucose and cellulose. J. Biotechnol. 4 (1986) 101–117

    Google Scholar 

  17. Ryu, D. D. Y.; Mandels, M.: Cellulases: Biosynthesis and applications. Enzyme Microb. Technol. 2 (1980) 91–102

    Google Scholar 

  18. Bungay, H. R.: Economics of recycling cellulase. Ann. N.Y. Acad. Sci. 434 (1985) 155–157

    Google Scholar 

  19. Clesceri, L. S.; Sinitsyn, A. P.; Saunders, A. M.; Bungay, H. R.: Recycle of cellulase enzyme complex after hydrolysis of steam-exploded wood. Appl. Biochem. Biotechnol. 11 (1985) 433–443

    Google Scholar 

  20. Vallander, L.; Eriksson, K.-E.: Enzymatic saccharification of pretreated wheat straw. Biotechnol. Bioeng. 27 (1985) 650–659

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, J., Bellgardt, K.H., Singh, A. et al. Modelling and simulation of cellulase adsorption and recycling during enzymatic hydrolysis of cellulosic materials. Bioprocess Engineering 7, 235–240 (1992). https://doi.org/10.1007/BF00369552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369552

Keywords

Navigation