Skip to main content
Log in

Monitoring the Synthesis of Au Nanoparticles Using SEC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this paper, it is demonstrated that size-exclusion chromatography (SEC) with SDS (10 mM) as the mobile phase can be used to rapidly determine the sizes of Au nanoparticles (NPs). It was found that standard particles at sizes ranging from 12.1 to 79.1 nm eluted in a linear manner with respect to the elution time. The reproducibility of the separation over the entire range of the calibration curve was high; the relative standard deviations of the elution times were less than 0.3%. Next, the separation conditions to characterize the sizes of Au NPs prepared through seed-assisted synthesis were employed. Using this approach, it was found that the rate of addition of the reducing agent influenced the sizes of the final products; for example, rapid addition of the reducing agent resulted in polydisperse Au NP products. SEC analysis revealed that the presence of NaOH in the synthesis medium decreased the sizes of the Au NPs dramatically. When using SEC to analyze Au NPs produced through seed-assisted synthesis, a good correlation existed between the sizes obtained using SEC and those provided by transmission electron microscopy (TEM). Based on these findings, SEC appears to be an efficient and accurate tool for characterizing the sizes of NPs fabricated through seed-assisted synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmid G (1994) Clusters and colloids: from theory to applications. VCH, New York

    Google Scholar 

  2. Kwon K, Lee KY, Kim M, Lee YW, Heo J, Ahn SJ, Han SW (2006) Chem Phys Lett 432:209–212

    Article  CAS  Google Scholar 

  3. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607–609

    Article  CAS  Google Scholar 

  4. Ascencio JA, Liu HB, Pal U, Medina A, Wang ZL (2006) Microsc Res Techniq 69:522–530

    Article  CAS  Google Scholar 

  5. Smetana AB, Klabunde KJ, Sorensen CM, Ponce AA, Mwale B (2006) J Phys Chem B 110:2155–2158

    Article  CAS  Google Scholar 

  6. He P, Zhu X (2007) Mater Res Bull 42:1310–1315

    Article  Google Scholar 

  7. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  8. Anshup, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TRS, Omkumar RV, John A, Pradeep T (2005) Langmuir 21:11562–11567

    Article  CAS  Google Scholar 

  9. Lu WS, Wang W, Su YL, Li JR, Jiang L (2005) Nanotechnology 16:2582–2586

    Article  CAS  Google Scholar 

  10. Brown KR, Walter DG, Natan MJ (2000) Chem Mater 12:306–313

    Article  CAS  Google Scholar 

  11. Zhu T, Vasilev K, Kreiter M, Mittler S, Knoll W (2003) Langmuir 19:9518–9525

    Article  CAS  Google Scholar 

  12. Van der Zande BMI, Bohmer MR, Fokkink LGJ, Schonenberger C (2000) Langmuir 16:451–458

    Article  Google Scholar 

  13. Yu YY, Chang SS, Lee CL, Wang CRC (1997) J Phys Chem B 101:6661–6664

    Article  CAS  Google Scholar 

  14. Okitsu K, Yue A, Tanabe S, Matsumoto H, Yobiko Y (2001) Langmuir 17:7717–7720

    Article  CAS  Google Scholar 

  15. Liu YC, Lin LH, Chiu WH (2004) J Phys Chem B 108:19237–19240

    Article  CAS  Google Scholar 

  16. Dong SA, Zhou SP (2007) Mater Sci Eng B 140:153–159

    Article  CAS  Google Scholar 

  17. Jana NR, Gearheart L, Murphy CJ (2001) Chem Mater 13:2313–2322

    Article  CAS  Google Scholar 

  18. Sakai T, Alexandridis P (2006) Chem Mater 18:2577–2583

    Article  CAS  Google Scholar 

  19. Wei GT, Liu FK (1999) J Chromatogr A 836:253–260

    Article  CAS  Google Scholar 

  20. Choi MMF, Douglas AD, Murray RW (2006) Anal Chem 78:2779–2785

    Article  CAS  Google Scholar 

  21. Liu FK (2007) Chromatographia 66:791–796

    Article  CAS  Google Scholar 

  22. Gaikwad AV, Verschuren P, Eiser E, Rothenberg G (2006) J Phys Chem B 110:17437–17443

    Article  CAS  Google Scholar 

  23. Wilcoxon JP, Martin JE, Provencio P (2000) Langmuir 16:9912–9920

    Article  CAS  Google Scholar 

  24. Liu FK, Wei GT (2004) Chromatographia 59:115–119

    Article  CAS  Google Scholar 

  25. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  26. Link S, El-Sayed MA (1999) J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  27. Harris DC (2007) Quantitative chemical analysis, 7th edn. WH Freeman, New York

    Google Scholar 

  28. Mandal M, Jana NR, Kundu S, Ghosh SK, Panigrahi M, Pal T (2004) J Nanopart Res 6:53–61

    Article  CAS  Google Scholar 

  29. Sugunan A, Dutta J (2005) Mater Res Soc Symp Proc 901E:Ra16–55

    Google Scholar 

  30. Yang LP, Tu WX (2006) Acta Phys Chim Sin 22:513–516

    CAS  Google Scholar 

  31. Turkevich J (1985) Gold Bull 18:125–131

    CAS  Google Scholar 

Download references

Acknowledgment

This study was supported financially by the National Science Council, Taiwan (NSC 96-2113-M-390-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Ken Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, FK. Monitoring the Synthesis of Au Nanoparticles Using SEC. Chroma 68, 81–87 (2008). https://doi.org/10.1365/s10337-008-0649-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0649-8

Keywords

Navigation