Skip to main content
Log in

A computer simulation of nucleation and growth of thin films

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A three-dimensional kinetic Monte Carlo technique has been developed for simulating the nucleation and growth of thin films. This model involves incident atom attachment, surface diffusion of the atoms on the growing surface and atom detachment from the growing surface. It takes some new effects into account, such as a significant improvement in calculation of activation energy for the atom diffusion, which renders the model more reasonable. In addition three optimum temperatures and the consistency of their dependence on deposition rate have been found out; the dependence of the surface roughness and relative density on the deposition rate has been discussed; and the approximation of freezing neighbour atoms and periodic boundary conditions has been applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohmi, T., Saitoh, T., Otsuki, M. et al., Formation of copper thin film by low kinetic energy particle process, J. Electrochem. Soc., 1991, 138: 1089–1097.

    Article  Google Scholar 

  2. Wang, Z. Q., Lu, S. H., Li, Y. S. et al., Epitaxial growth of metastable modification of copper with body-centered-cubic structure, Phys. Rev. B, 1987, 35: 9322–9325.[DOI]

    Article  ADS  Google Scholar 

  3. Sartwell, B. D., Influence of ion beam activation on the mode of growth of Cu film on Si(100), J. Vac. Sci. Technol. A, 1989, 7: 2586–2592.

    Article  ADS  Google Scholar 

  4. Kralj, M., Pervan, P., Milun, M., Growth, structure and properties of ultra-thin copper films on a V(110) surface, Surf. Sci., 1999, 423: 24–31.[DOI]

    Article  ADS  Google Scholar 

  5. Dehm, G., Scheu, C., Ruhle, M. et al., Growth and structure of internal Cu/Al2O3 and Cu/Al2O3 interfaces, Acta Mater., 1998, 46: 759–772.[DOI]

    Article  Google Scholar 

  6. Abe, K., Harada, Y., Onoda, H., Study of crystal orientation of Cu film on TiN layered structures, J. Vac. Sci. Tech. B, 1999, 17: 1464–1469.

    Article  Google Scholar 

  7. Nagamachi, S., Yamakage, Y., Ueda, M. et al., Focused ion-beam direct deposition of metal thin film, Rev. Sci. Instrum., 1996, 67: 2351–2359.

    Article  ADS  Google Scholar 

  8. Richter, A., Smith, R., Lenz, H. et al., Growth of biological films: Microscopical investigations and computer simulations, Mat. Sci. & Eng. Ering C, 1999, 8–9: 451–462.[DOI]

    Article  Google Scholar 

  9. Rong, F. X., Computer simulation of surface growth, Journal of Crystal, 1997, 174: 531–538.

    Google Scholar 

  10. Djafari, R. M., Malek, R., Esteve, D., Monte Carlo simulation of mismatch relaxation and island coalescence during heteroepitaxial growth—thin solid films, The Solid Films, 1998, 318: 61–64.[DOI]

    Article  Google Scholar 

  11. Yun, J. H., Rhee, S. W., Feature scale simulation of selective chemical vapor deposition process. Thin Solid Films, 1999, 339: 270–276.[DOI]

    Article  ADS  Google Scholar 

  12. Peyla, P., Pimpinelli, A., Cibert, J. et al., Deposition and growth with desorption for CdTe molecular beam epitaxy. Journal of Crystal Growth, 1998, 184–185: 75–79.[DOI]

    Article  Google Scholar 

  13. Doruker, P., Simulation of polyethylene thin films composed of various chain lengths, Polyner, 2002, 43: 425–430.

    Article  Google Scholar 

  14. Petrov, P. K., Vilpyas, V. A., Chakalov, R. A., Three-dimensional Monte Carlo simulation of sputtered atom transport in the process of ion-plasma sputter deposition of multicomponent thin films, Vacuum, 1999, 52: 427–434.[DOI]

    Article  Google Scholar 

  15. Ellegaard, O. Schou, J. Urbassek, H. M., Monte Carlo description of gas flow laser-evaporated silver, Appl. Phys. A, 1999, 69: S557-S581.

    Article  Google Scholar 

  16. Mizuseki, H., Jin, Y., Kawazoe, Y., et al., Cluster growth process by direct simulation monte carlo method, Applied Physics A Materials Science & Processing, 2001, 73: 731–735.[DOI]

    Article  ADS  Google Scholar 

  17. Levine, S. W., Clancy, P., A simple model for the growth of polycrystalline Si using the kinetic Monte Carlo simulation, Modeling Simu. Mater. Sci. Eng., 2000, 8: 751–792.[DOI]

    Article  ADS  Google Scholar 

  18. Dong, L. F., Chen, J. Y., Li, X. W., et al., Dissociation process of CH/H gas mixture during EACVD, Thin Solid Films, 2001, 390: 93–97.[DOI]

    Article  ADS  Google Scholar 

  19. Zhang, X., Ross, P. N., Kostecki, R., Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles, Journal of the Electrochemical Society, 2001, 148: A463-A470.[DOI]

    Article  Google Scholar 

  20. Legard, M., Diawara, B., Legender, J. et al., Three-dimensional modeling of selective dissolution and passivation of iron-chromium alloys, Corrosion Science, 2002, 44: 773–790.[DOI]

    Article  Google Scholar 

  21. Huang, H. C., Gilmer, G. H., Multi-lattice Monte Carlo model of thin films, Journal of Computer-Aided Materials Design, 1999, 6: 117–127.[DOI]

    Article  Google Scholar 

  22. Henelius, P., Kuntz, P. J., Timm, C. et al., Quantum Monte Carlo simulation of thin magnetic films, Phys. Rev. B, 2002, 66: 094407, 1–8.

    Google Scholar 

  23. Fichthom, K. A., Merrick, M. L., Scheffler, M., A kinetic Monte Carlo investigation of island nucleation and growth in thin-film epitaxy in the presence of substrate-mediated interactions. Appl. Phys. A, 2002, 75: 17–23.[DOI]

    Article  ADS  Google Scholar 

  24. Yang, Y. G., Zhou, X. W., Johnson, R. A. et al., Monte Carlo simulation of hyperthermal physical vapor deposition, Acta Mater., 2001, 49: 3321–3332.[DOI]

    Article  Google Scholar 

  25. Joshua, M. P., Joachim, J., Colin, C. H. et al., Kinetic Monte Carlo-molecular dynamics of hyperthermal copper deposition on Cu(111), Phys. Rev. B, 2002, 66: 235412, 1–8.

    Google Scholar 

  26. Mikalai, M., Donker, Y. H., Rob, B. M., A study of energy transfer processes in zinc-porphyrin films using Monte Carlo simulation of fluorescence decay, Chemical Physics Letters, 2001, 345: 141–150.[DOI]

    Article  Google Scholar 

  27. Mae, K., Molecular dynamics aided kinetic Monte Carlo simulations of thin film growth of Ag On Mo(110) with structural evolution, Surf. Sci., 2001, 482–485: 860–865.[DOI]

    Article  Google Scholar 

  28. Tsay, J. S., Mangen, T., Wandelt, K., Kinetic study of the formation of a surface-confined Cu50Pt50 alloy, Thin Solid Films, 2001, 397: 152–156.[DOI]

    Article  ADS  Google Scholar 

  29. Da Siliva, E. F., de Vasconcelos, E. A., Stosic, B. et al., Dynamics of SiO2/SiOx/Si multilayer growth and interfacial effects on silicon quantum well confinement properties, Mat. Sci. Eng. B, 2000, B74: 188–192.[DOI]

    Google Scholar 

  30. Sumitomo, K., Kobayashi, Y., Ito, T. et al., Ge segregation mechanism during Si/Ge multiplayer growth, Thin Solid Films, 1999, 357: 76–80.[DOI]

    Article  ADS  Google Scholar 

  31. Adams, J. B., Wang, Z. Y., Li, Y., Modeling Cu thin film growth, Thin Solid Films, 2000, 365: 201–210.[DOI]

    Article  ADS  Google Scholar 

  32. Gilmer, G. H., Hanchen, H., Christopher, R., Thin film deposition: Fundamentals and modeling, Comp. Mat. Sci., 1998, 12: 354–380.[DOI]

    Article  Google Scholar 

  33. Gilmer, G. H., Hanchen, H., de la Rubia, T. D. et al., Lattice Monte Carlo models of thin deposition, Thin Solid Films, 2000, 365: 189–200.[DOI]

    Article  ADS  Google Scholar 

  34. Battailr, C. C., Srolovitz, D. J., A kinetic Monte Carlo method for the atomic-scale simulation of chemical vapor deposition: Application to diamond, J. Appl. Phys., 1996, 82: 6293–6300.[DOI]

    Article  ADS  Google Scholar 

  35. Wang, L. G., Clancy, P., Kinetic Monte Carlo simulation of the growth of polycrystalline Cu film, Surf. Sci., 2001, 473: 25–38.[DOI]

    Article  ADS  Google Scholar 

  36. Bruschi, P., Cagnoni, P., Nannini, A., Temperature-dependent Monte Carlo simulation of thin metal film growth and percolation, Phys. Rev. B, 1997, 55: 7955–7963.[DOI]

    Article  ADS  Google Scholar 

  37. Landau, D. P., Pal, S., Shim, S. Y., Monte Carlo simulations of film growth, Comp. Phys. Comm., 1999, 121–122: 341–346.[DOI]

    Article  Google Scholar 

  38. Wei, H. L., Liu, Z. L., Yao, K. L., Influence of microstructure of substrate surface on early stage of thin growth, Vacuum, 2000, 56: 185–190.[DOI]

    Article  Google Scholar 

  39. Numinen, L., Kuroen, A., Kaski, K., Kinetic Monte Carlo simulation of nucleation on patterned substrates, Phys. Rev. B, 2000, 63: 035407, 1–7.

    Google Scholar 

  40. Bruschi, P., Nannini, A., Pitto, M., Three-dimensional Monte Carlo simulations of electron-migration in polycrystalline thin films, Comp. Mat. Sci., 2000, 17: 299–304.[DOI]

    Article  Google Scholar 

  41. Bruschi, P., Nannini, A., Pieri, F., Monte Carlo simulation of polycrystalline thin film deposition, Phys. Rev. B, 2000, 63: 0345406, 1–8.

    Google Scholar 

  42. Pomeroy, M., Joachim, J., Colin, C., et al., Kinetic Monte Carlo molecular dynamics investigations of hyper-thermal copper deposition on Cu(111), Phys. Rev. B, 2002, 66: 235412, 1–8.

    Google Scholar 

  43. Wadley, H. N. G., Zhou, X., Johnson, R. A. et al., Mechanisms, models and methods of vapor deposition, Prog. Mat. Sci., 2001, 46: 329–377.[DOI]

    Article  Google Scholar 

  44. Ye, J. S., Hu, X. J., Monte Carlo simulation of epitaxial growth of ultra film, Acta Phys. Sin. (in Cinese), 2002, 51: 1108–1111.

    Google Scholar 

  45. Zhang, P. F., Zheng, X. P., Wu, S. P., et al., Kinetic Monte Carlo simulation of Cu film growth, vacuum, 2004, 4: 405–410.

    Article  Google Scholar 

  46. Zhang, P. F., Zheng, X. P., He, D. Y., Kinetic Monte Carlo simulation of film growth, Science in China, Ser. G, 2003, 46(6): 610–618.[Abstract] [PDF]

    MATH  ADS  Google Scholar 

  47. Fichthorn, K. A., Merrick, M., Scheffler, L., A kinetic Monte Carlo investigation of Island nucleation and growth in thin-film epitaxy, Appl. Phys. A, 2002, 75: 17–23.[DOI]

    Article  ADS  Google Scholar 

  48. Zhang, Q. Y., Ma, T. C., Pan, Z. Y. et al., The role of energetic atoms in the deposition of Au/Au(100) thin films—a computer simulation study, Surface and Coating Tech., 2000, 128–129: 175–180.[DOI]

    Article  Google Scholar 

  49. Joyce, B. A., Vvedensky, D. D., Avery, A. R. et al., Nucleation mechanisms during MBE growth of lattice-matched and strained III–V compound films, Appl. Surf. Sci., 1998, 130–132: 357–366.[DOI]

    Article  Google Scholar 

  50. Brune, H., Roder, H., Borageand, K., Microscopic view of nucleation on surface, Phys. Rev. Lett., 1994, 73: 1955–1958.[DOI]

    Article  ADS  Google Scholar 

  51. Hwang, R. Q., Schroder, J. C., Behn, R. J., Fractal growth of two-dimensional islands: Au on chemical vapor deposition from hexafluoroacetylacetonate Ru(0001), Phys. Rev. Lett., 1991, 67: 3279–3282.[DOI]

    Article  ADS  Google Scholar 

  52. Song, J. H., Park, M. Y., Rhee, S. W., Growth rate and microstructure of copper thin film with metal-organic copper (I) allyltrimethysilane, Thin Solid Film, 1998, 335: 229–236.[DOI]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Xiaoping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Zhang, P., He, D. et al. A computer simulation of nucleation and growth of thin films. Sci China Ser G: Phy & Ast 47, 442–451 (2004). https://doi.org/10.1360/03yw0220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yw0220

Keywords

Navigation