Skip to main content
Log in

Molecular Dynamics Modeling of the Deposition of Thin Films Consisting of Layers of Alternating Density

  • PROCEEDINGS OF THE CONFERENCE “PHYSICAL CHEMISTRY IN RUSSIA AND BEYOND: FROM QUANTUM CHEMISTRY TO EXPERIMENT” (CHERNOGOLOVKA)
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Deposition of a thin film consisting of alternating dense and porous layers is modeled via classical molecular dynamics. The structural parameters of the film are calculated. In modeling the annealing of the deposited film, the concentration of main point defects was found to fall appreciably in all layers of the film. Based on correlations between the density and the refractive index, it is established that the refractive index varies from 1.3 to 1.49, reaching its minimum value in the most porous layers. Such layers can be used in designing multilayer optical coatings that allow light transmission and reflection within specified wavelength ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Robbie, M. J. Brett, and A. Lakhtakia, Nature (London, U.K.) 384, 616 (1996).

    Article  CAS  Google Scholar 

  2. W. Trottier-Lapointe, O. Zabeida, T. Schmitt, and L. Martinu, Appl. Opt. 55, 8796 (2016).

    Article  CAS  Google Scholar 

  3. J. Zhang, Y. Cao, Q. Gao, C. Wu, F. Yu, and Y. Liang, Nanoscale Res. Lett. 8, 312 (2013).

    Article  Google Scholar 

  4. M. Backholm, M. Foss, and K. Nordlund, Nanotecnology 23, 385708 (2012).

    Article  Google Scholar 

  5. S. Rossnagel, Thin Films: Modeling of Film Deposition for Microelectronic Applications (Academic, New York, 1996).

    Google Scholar 

  6. T. Smy, D. Vick, M. J. Brett, et al., J. Vac. Sci. Technol., A 18, 2507 (2000).

    Article  CAS  Google Scholar 

  7. F. V. Grigoriev, V. B. Sulimov, and A. V. Tikhonravov, J. Non.-Cryst. Solids 512, 98 (2019).

    Article  CAS  Google Scholar 

  8. F. V. Grigoriev, A. V. Sulimov, I. V. Kochikov, et al., Int. J. High Perform. Comput. Appl. 29, 184 (2015).

    Article  Google Scholar 

  9. F. V. Grigoriev, A. V. Sulimov, E. V. Katkova, et al., J. Non.-Cryst. Solids 448, 1 (2015).

    Article  Google Scholar 

  10. F. V. Grigoriev, E. V. Katkova, A. V. Sulimov, et al., Opt. Mater. Express 6, 3960 (2016).

    Article  CAS  Google Scholar 

  11. F. Grigoriev, A. Sulimov, I. Kochikov, et al., Appl. Opt. 56, C87 (2017).

    Article  CAS  Google Scholar 

  12. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  CAS  Google Scholar 

  13. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., J. Chem. Phys. 81, 3684 (1984).

    Article  CAS  Google Scholar 

  14. M. J. Abraham, T. Murtola, R. Schulz, et al., SoftwareX 1–2, 19 (2015).

    Article  Google Scholar 

  15. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).

    Article  CAS  Google Scholar 

  16. V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale (Chapman and Hall/CRC Comput. Science, CRC, Boca Raton, 2013), p. 283.

  17. Y. Jiang, Y. Ji, H. Liu, D. Liu, et al., Proc. SPIE 8416, 84160F (2012).

    Article  Google Scholar 

  18. Y. Jiang, H. Liu, L. Wang, et al., Appl. Opt. 53, A83 (2014).

    Article  CAS  Google Scholar 

  19. K. Taniguchi, M. Tanaka, C. Hamaguchi, and K. Imai, J. Appl. Phys. 67, 2195 (1990).

    Article  CAS  Google Scholar 

  20. C. E. Viana, N. I. Morimoto, and O. Bonnaud, Microelectron. Reliab. 40, 613 (2000).

    Article  Google Scholar 

  21. E. M. Kirova, G. E. Norman, and V. V. Pisarev, Russ. J. Phys. Chem. A 92, 1865 (2018).

    Article  CAS  Google Scholar 

  22. R. E. Hummel and K. H. Guenther, Handbook of Optical Properties: Thin Films for Optical Coatings (CRC, Boca Raton, FL, 1995), Vol. 1.

    Google Scholar 

  23. D. Schmidt and M. Schubert, Appl. Phys. 114, 083510 (2013).

    Article  Google Scholar 

  24. T. Hofmann, D. Schmidt, A. Boosalis, et al., Appl. Phys. Lett. 99, 081903 (2011).

    Article  Google Scholar 

  25. F. V. Grigoriev, V. B. Sulimov, and A. V. Tikhonravov, Proc. SPIE 10691, 1069109 (2018).

    Google Scholar 

  26. K. Vedam and P. Limsuwan, J. Chem. Phys. 69, 4772 (1978).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 19-11-00053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Grigor’ev.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, F.V., Sulimov, V.B. & Tikhonravov, A.V. Molecular Dynamics Modeling of the Deposition of Thin Films Consisting of Layers of Alternating Density. Russ. J. Phys. Chem. 94, 979–983 (2020). https://doi.org/10.1134/S003602442005009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442005009X

Keywords:

Navigation