Skip to main content
Log in

Doubly contracted CI method and applications

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Based on the hole-particle correspondence an approximate so-called doubly contracted CI scheme is proposed. Examples calculated based on the doubly contracted CI (DCCI) scheme show that the number of configurations after contraction is reduced by three orders of magnitude, and the computation time is reduced by an order of magnitude. The examples also show that compared with experiments the DCCI and uncontracted CI have similar and reasonable accuracy to some spectroscopic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buenker, R. J., Peyerrimhoff, S. D., Theor. Chim. Acta, 1968, 12: 5803.

    Article  Google Scholar 

  2. Hanrath, M., Engels, B., New algorithms for an individually selecting MR-CI program, Chem. Phys., 1997, 225: 197–202.

    Article  CAS  Google Scholar 

  3. Werner, H. -J, Knowles, P. J., An efficient internally contracted multiconfiguration-reference configuration interaction method, J. Chem. Phys., 1988, 89: 5803–5814.

    Article  CAS  Google Scholar 

  4. Dobbyn, A. J., Knowles, P. J., Harrison, R. J., Parallel internally contracted multireference configuration interaction, J. Comput. Chem., 1998, 19: 1215–1228.

    Article  CAS  Google Scholar 

  5. Siegbahn, P. S. M., The externally contracted CI method applied to N2, Int. J. Quantum Chem., 1983, 23: 1869–1889.

    Article  CAS  Google Scholar 

  6. Lee, T. J., Theory for externally contracted configuration interaction energy gradients, J. Chem. Phys., 1987, 87: 2825–2831.

    Article  CAS  Google Scholar 

  7. Wang Yubin, Gan Zhengting, Su Kehe et al., An adjustable contracted CI method, Science in China, Series B, 1999, 42: 649–655.

    Article  CAS  Google Scholar 

  8. Wenzel, W., Steiner, M. M., Wilson, K. G., Multireference Basis-Set Reduction, Int. J. Quantum Chemistry, 1996, S30: 113–118.

    Google Scholar 

  9. Walter, D., Carter, E. A., Multi-reference weak pairs local configuration interaction: efficient calculations of bond breaking, Chem. Phys. Letters, 2001, 346: 177–185.

    Article  CAS  Google Scholar 

  10. Wang Yubin, Hong Xingji, Liu Jun, et al., Structures and potential energy surfaces of lithium isocyanide and its isomers, Theochem, 1996, 369: 173–182.

    Article  CAS  Google Scholar 

  11. Bian Wensheng, Werner J, Global ab initio potential energy surface for the ClH2 reactive system, J. Chem. Phys., 2000, 112: 220 -229.

    Article  CAS  Google Scholar 

  12. Yang Minghui, Zhang, D. H., Collins, M. A. et al., Ab initio potential-energy surfaces for the reactions OH+H2 ↔ H2O+H, J. Chem. Phys., 2001, 115: 174–178.

    Article  CAS  Google Scholar 

  13. Zhai Gaohong, Wang Yubin, Shi Ting et al., Global many-body potential energy surface of ground state H2O+, Chemical Journal of Chinese Universities, 2003, 24: 2039–2043.

    CAS  Google Scholar 

  14. Paldus, J., Boyle, M. J., Unitary group approach to the many-electron correlation problem via graphical methods of spin algebras, Physica Scripta, 1980, 21: 295.

    Article  CAS  Google Scholar 

  15. Shavitt, I., Unitary group approach to configuration interaction calculations of the electronic structure of atoms and molecules, Unitary Group Approach to Configuration Interaction Calculations of the Electronic Structure of Atoms and Molecules Mathematical Frontiers in Computational Chemical Physic (ed. Truhlar, D. G.), Berlin: Springer Verlag, 1988, 299.

    Google Scholar 

  16. Siegbahn, P. S. M., Generalizations of the CI method, II, J. Chem. Phys., 1980, 72: 1647.

    Article  CAS  Google Scholar 

  17. Wang Yubin, Wen Zhenyi, Dou Qishi et al, New realization of loop driven direct CI, J. Comput. Chem., 1992, 13: 187.

    Article  CAS  Google Scholar 

  18. Wen Zhenyi, WangYubin, Theory and Application of Unitary Group Approach (in Chinese), Shanghai: Shanghai Science and Technology Press, 1994.

    Google Scholar 

  19. Wang Yubin, Zhai Gaohong, Suo Binbin et al., Hole-particle correspondence in CI calculations, Chem. Phys. Letters, 2003, 375: 134–140.

    Article  CAS  Google Scholar 

  20. Frisch, M. J., Trucks, G. W., Schlegel, H. B. et al., Gaussian 03, Revision A.1, Pittsburgh PA: Gaussian, Inc., 2003.

    Google Scholar 

  21. Dupuis, M., Farazdel, A., Karna, S. P. et al., HONDO: A general atomic and molecular electronic structure system, HONDO, Modern Techniques in Computational Chemistry (ed. Clementi, E.), Leiden: ESCOM, 1990, 277.

    Google Scholar 

  22. Bunker, P. R., Jensen, P., Kraemer, W. P. et al., The potential surface of x 3 B 1 methylene (CH2) and the singlet-triplet splitting, J. Chem. Phys, 1986, 85: 3724–3731.

    Article  CAS  Google Scholar 

  23. Berkwitz, J., Greene, J. P., Cho, H. et al., Photoionization mass spectrometric studies of SiHn (n =1-4), J. Chem. Phys., 1987, 86: 1235.

    Article  Google Scholar 

  24. Bruna, P., Peyerimhoff, S. D., Structure and electronic spectra of small radicals by quantum mechanical methods, Bull. Soc. Chim. (Belgium), 1983, 92: 525.

    CAS  Google Scholar 

  25. Phillips, R. A., Bunker, R. J., Beardsworth, R. et al., An ab initio study of the rotation-vibration energy levels of germylene (GeH2) in the a 3 B 1, state, Chem. Phys. Letters, 1985, 118: 60.

    Article  CAS  Google Scholar 

  26. Herzberg, G., Molecular Spectra and Molecular Structure III, New York: Van Nostrand Reinhold Company, 1966.

    Google Scholar 

  27. Masik, J., Hubac, I., Mach, P., Applicability of quasi-degenerate many-body perturbation theory to the ground state of F2 molecule, Int. J. Quant. Chem., 1995, 53: 297–308.

    Article  CAS  Google Scholar 

  28. Wang Yubin, Gan Zhengting, Su Kehe et al., Configuration-based multi-reference second order perturbation theory, Science in China, Series B, 2000, 43: 567–575.[Abstract] [PDF]

    Article  CAS  Google Scholar 

  29. Huber, K. P., Herzberg, G., Constants of Diatomic Molecules, New York: Van Nostrand, 1979, 214–215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhenyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Han, H., Zhai, G. et al. Doubly contracted CI method and applications. Sc. China Ser. B-Chem. 47, 276–282 (2004). https://doi.org/10.1360/03yb0256

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yb0256

Keywords

Navigation