Skip to main content
Log in

Some problems in density functional theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Though calculations based on density functional theory (DFT) are used remarkably widely in chemistry, physics, materials science, and biomolecular research and though the modern form of DFT has been studied for almost 60 years, some mathematical problems remain. From a physical science perspective, it is far from clear whether those problems are of major import. For context, we provide an outline of the basic structure of DFT as it is presented and used conventionally in physical sciences, note some unresolved mathematical difficulties with those conventional demonstrations, then pose several questions regarding both the time-independent and time-dependent forms of DFT that could benefit from attention in applied mathematics. Progress on any of these would aid in development of better approximate functionals and in interpretation of DFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Engel, E., Dreizler, R.M.: Density Functional Theory. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  2. Eschrig, H.: The Fundamentals of Density Functional Theory. Teubner, Stuttgart (1996)

    Book  MATH  Google Scholar 

  3. Kryachko, E.S., Ludeña, E.: Energy Density Functional Theory of Many-Electron Systems. Kluwer, Dordrecht (1990)

    Book  Google Scholar 

  4. Englisch, H., Englisch, R.: Exact density functionals for ground-state energies I. General results. Phys. Stat. Solidi (b) 123, 711 (1984)

    Article  ADS  MATH  Google Scholar 

  5. Englisch, H., Englisch, R.: Exact density functionals for ground-state energies II. Details and remarks. Phys. Stat. Solidi (b) 124, 373 (1984)

    Article  ADS  Google Scholar 

  6. Zumbach, G., Maschke, K.: New approach to the calculation of density functionals. Phys. Rev. A 28, 544 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lieb, E.H.: Density functionals for Coulomb systems. Int. J. Quantum Chem. 24, 243 (1983)

    Article  Google Scholar 

  8. Evans, R.: Density functionals in the theory of nonuniform fluids. In: Henderson, D. (ed.) Fundamentals of Inhomogeneous Fluids. Marcel Dekker, New York (1992)

    Google Scholar 

  9. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  10. Levy, M.: Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the \(\nu \)-representability problem. Proc. Nat. Acad. Sci. (USA) 76, 6062–6065 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  11. Mermin, N.D.: Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  12. Eschrig, H.: \(\rm T >0\) ensemble-state density functional theory via Legendre transform. Phys. Rev. B 82, 205120 (2010)

    Article  ADS  Google Scholar 

  13. Karasiev, V.V., Chakraborty, D., Dufty, J.W., Harris, F.E., Runge, K., Trickey, S.B.: Innovations in finite-temperature density functionals. In: Graziani, F., et al. (eds.) Frontiers and Challenges in Warm Dense Matter, pp. 61–85. Springer Verlag, Heidelberg (2014)

    Chapter  Google Scholar 

  14. Parr, R.G., Yang, W.: Density Functional Theory of Atoms and Molecules. Oxford Science Publication, New York (1989)

    Google Scholar 

  15. Dreizler, R.M., Gross, E.K.U.: Density Functional Theory. Springer-Verlag, Berlin (1990)

    Book  MATH  Google Scholar 

  16. Teale, A.M., Helgaker, T., Savin, A.: DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys. Chem. Chem. Phys. 24, 28701–28781 (2022)

    Article  Google Scholar 

  17. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  18. Garrigue, L.: Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. Math. Phys. Anal. Geom. 21, 27 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lammert, P.E.: In search of the Hohenberg-Kohn theorem. J. Math. Phys. 59, 042110 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Giesbertz, K.J.H., Ruggenthaler, M.: One-body reduced density-matrix functional theory in finite basis sets at elevated temperatures. Phys. Rep. 806, 1–47 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. Chayes, J.T., Chayes, L., Ruskai, M.B.: Density functional approach to quantum lattice systems. J. Stat. Phys. 38, 497–518 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Penz, M., van Leeuwen, R.: Density-functional theory on graphs. J. Chem. Phys. 155, 244111 (2021)

    Article  ADS  Google Scholar 

  23. van Leeuwen, R.: Density functional approach to the many-body problem: key concepts and exact functionals. Adv. Quantum Chem. 43, 1016 (2003)

    Google Scholar 

  24. Lammert, P.E.: Differentiability of Lieb functional in electronic density functional theory. Int. J. Quantum Chem. 107, 1943 (2007)

    Article  ADS  Google Scholar 

  25. Kvaal, S., Ekström, U., Teale, A.M., Helgaker, T.: Differentiable but exact formulation of density-functional theory. J. Chem. Phys. 140, 18A518 (2014)

    Article  Google Scholar 

  26. Wesolowski, T.A., Wang, Y.A. (eds.): Recent Progress in Orbital-free Density Functional Theory. World Scientific Publishing Company, Singapore (2013)

    MATH  Google Scholar 

  27. Karasiev, V.V., Chakraborty, D., Trickey, S.B.: Progress on new approaches to old ideas: orbital-free density functionals. In: Delle Site, L., Bach, V. (eds.) Many-Electron Approaches in Physics, Chemistry, and Mathematics, pp. 113–134. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  28. Luo, K., Karasiev, V.V., Trickey, S.B.: Towards accurate orbital-free simulations: a generalized gradient approximation for the non-interacting free-energy density functional. Phys. Rev. B 101, 075116 (2020)

    Article  ADS  Google Scholar 

  29. Teller, E.: On the stability of molecules in the Thomas-Fermi theory. Rev. Mod. Phys. 34, 627 (1962)

    Article  ADS  MATH  Google Scholar 

  30. Lieb, E.H., Simon, B.: Thomas-Fermi theory revisited. Phys. Rev. Lett. 31, 681 (1973)

    Article  ADS  Google Scholar 

  31. Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Spruch, L.: Pedagogic notes on Thomas-Fermi theory (and on some improvements): atoms, stars, and the stability of bulk matter. Rev. Mod. Phys. 63, 151 (1991)

    Article  ADS  Google Scholar 

  34. Kirzhnits, D.A.: Quantum corrections to the Thomas-Fermi equation. Sov. Phys. JETP 5, 64 (1957)

    MathSciNet  MATH  Google Scholar 

  35. Hodges, C.H.: Quantum corrections to the Thomas-Fermi approximation -the Kirzhnits method. Can. J. Phys. 51, 1428 (1973)

    Article  ADS  Google Scholar 

  36. Murphy, D.R.: Sixth-order term of the gradient expansion of the kinetic-energy density functional. Phys. Rev. A 24, 1682 (1981)

    Article  ADS  Google Scholar 

  37. Salasnich, Luca: Kirzhnits gradient expansion for a D-dimensional Fermi gas. J. Phys. A Math. Theor. 40, 9987 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Blanc, X., Cances, E.: Nonlinear instability of density-independent orbital-free kinetic-energy functionals. J. Chem. Phys. 122, 214106 (2005)

    Article  ADS  Google Scholar 

  39. Levy, M., Ou-Yang, H.: Exact properties of the Pauli potential for the square root of the electron density and the kinetic energy functional. Phys. Rev. A 38, 625 (1988)

    Article  ADS  Google Scholar 

  40. Luo, K., Trickey, S.B.: Trivial constraints on orbital-free kinetic energy density functionals. Chem. Phys. Lett. 695, 190 (2018)

    Article  ADS  Google Scholar 

  41. Lindmaa, A., Mattsson, A.E., Armiento, R.: Quantum oscillations in the kinetic energy density: gradient corrections from the Airy gas. Phys. Rev. B 90, 075139 (2014)

    Article  ADS  Google Scholar 

  42. Cancio, A.C., Redd, J.J.: Visualization and orbital-free parametrization of the large-Z scaling of the kinetic energy density of atoms. Mol. Phys. 115, 618 (2017)

    Article  ADS  Google Scholar 

  43. Constantin, L.A.: Semilocal properties of the Pauli kinetic potential. Phys. Rev. B 99, 155137 (2019)

    Article  ADS  Google Scholar 

  44. Lieb, E.H.: Some open problems about Coulomb systems. In: Osterwalder K (ed) Mathematical Problems in Theoretical Physics, pp. 91–102. Springer, Berlin (1980)

  45. Lewin, M., Lieb, E. H., Seiringer, R.: Universal functionals in density functional theory. arXiv:1912.10424

  46. Trickey, S.B., Karasiev, V.V., Chakraborty, D.: Comment on “Single-point kinetic energy density functionals: a pointwise kinetic energy density analysis and numerical convergence investigation’’. Phys. Rev. B 92, 117101 (2015)

    Article  ADS  Google Scholar 

  47. Gázquez, J.L., Robles, J.: On the atomic kinetic energy functionals with full Weizsäcker correction. J. Chem. Phys. 76, 1467 (1982)

    Article  ADS  Google Scholar 

  48. Witt, W.C., Jiang, K., Carter, E.A.: Upper bound to the gradient-based kinetic energy density of noninteracting electrons in an external potential. J. Chem. Phys. 151, 064113 (2019)

    Article  ADS  Google Scholar 

  49. Savin, A.: Absence of proof for the Hohenberg-Kohn theorem for a Hamiltonian linear in the magnetic field. Mol. Phys. 115, 13 (2017)

    Article  ADS  Google Scholar 

  50. Capelle, K., Vignale, G.: Nonuniqueness of the potentials of spin-density-functional theory. Phys. Rev. Lett. 86, 5546 (2001)

    Article  ADS  Google Scholar 

  51. Capelle, K., Ullrich, C.A., Vignale, G.: Degenerate ground states and nonunique potentials: breakdown and restoration of density functionals. Phys. Rev. A 76, 012508 (2007)

    Article  ADS  Google Scholar 

  52. Tellgren, E.I., Kvaal, S., Sagvolden, E., Ekstrom, U., Teale, A.M., Helgaker, T.: Choice of basic variables in current-density-functional theory. Phys. Rev. A 86, 062506 (2012)

    Article  ADS  Google Scholar 

  53. Cubitt, T.S., Pérez-Garcia, D., Wolf, M.M.: Undecidability of the spectral gap. Nature 528, 207 (2015)

    Article  ADS  MATH  Google Scholar 

  54. Cubitt, T., Pérez-Gracia, D., Wolf, M.M.: Undecidability of the spectral gap. Forum Math. Pi 10, e14 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  55. Jacob, D., Kurth, S.: Many Body spectral functions from steady state density functional theory. Nano. Lett. 18, 2086 (2018)

    Article  ADS  Google Scholar 

  56. Trickey, S.B., Vela, A.: Explicit particle-number dependence in density functional theory. J. Mex. Chem. Soc. 57, 105 (2013)

    Google Scholar 

  57. March, N.H., White, R.J.: Non-Relativistic theory of atomic and ionic binding energies for large atomic number. J. Phys. B 5, 466 (1972)

    Article  ADS  Google Scholar 

  58. Acharya, P.K., Bartolotti, L.J., Sears, S.B., Parr, R.G.: An atomic kinetic-energy functional with full Weizsäcker correction. Proc. Natl. Acad. Sci. (USA) 77, 6978 (1980)

    Article  ADS  Google Scholar 

  59. March, N.H., Parr, R.G.: Chemical potential, Teller’s theorem, and the scaling of atomic and molecular energies. Proc. Natl. Acad. Sci. (USA) 77, 6285 (1980)

    Article  ADS  Google Scholar 

  60. Sears, S.B., Parr, R.G., Dinur, U.: On the Quantum-mechanical kinetic energy as a measure of the information in a distribution. Isr. J. Chem. 19, 165 (1980)

    Article  Google Scholar 

  61. Bartolotti, L.J., Acharya, P.K.: On the functional derivative of the kinetic energy density functional. J. Chem. Phys. 77, 4576 (1982)

    Article  ADS  Google Scholar 

  62. Tal, Y., Bartolotti, L.J.: On the \(Z^{-1}\) and \(N^{-1/3}\) expansions of Hartree-Fock atomic energies. J. Chem. Phys. 76, 4056 (1982)

    Article  ADS  Google Scholar 

  63. Furness, J.W., Kaplan, A.D., Ning, J., Perdew, J.P., Sun, J.: Accurate and numerically efficient r\(^{2}\)SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 11, 8208 (2020)

    Article  Google Scholar 

  64. Tchenkoue, M.-L.M., Penz, M., Theophilou, I., Ruggenthaler, M., Rubio, A.: Force balance approach for advanced approximations in density functional theories. J. Chem. Phys. 151, 154107 (2019)

    Article  ADS  Google Scholar 

  65. Ruggenthaler, M., Tancogne-Dejean, N., Laestadius, A., Csirik, M.A., Penz, M., Rubio, A.: Exchange energies with forces in density functional theory. arXiv:2203.16980

  66. Nam, S., Song, S., Sim, E., Burke, K.: Measuring density-driven errors using Kohn-Sham inversion. J. Chem. Theory Comput. 16, 5014–5023 (2020)

    Article  Google Scholar 

  67. Ullrich, C.A.: Time-Dependent Density Functional Theory. New York Univ. Press, New York (2012)

  68. van Leeuwen, R.: Key concepts in time-dependent density functional theory. Int. J. Mod. Phys. B 15, 1969 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Runge, E., Gross, E.K.U.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  70. van Leeuwen, R.: Mapping from densities to potentials in time-dependent density-functional theory. Phys. Rev. Lett. 82, 3863 (1999)

    Article  ADS  Google Scholar 

  71. Dufty, J., Luo, K., Trickey, S.B.: Density response from kinetic theory and time-dependent density-functional theory for matter under extreme conditions. Phys. Rev. E 98, 033203 (2018)

    Article  ADS  Google Scholar 

  72. Xu, B.-X., Rajagopal, A.K.: Current density functional theory for time-dependent systems. Phys. Rev. A l 31, 2682 (1985)

    Article  ADS  Google Scholar 

  73. Dhara, A.K., Ghosh, S.K.: Density-functional theory for time-dependent systems. Phys. Rev. A 35, 442(R) (1987)

    Article  ADS  Google Scholar 

  74. Gross, E.K.U., Kohn, W.: Time-dependent density functional theory. Adv. Quantum Chem. 21, 255 (1990)

  75. Ruggenthaler, M., van Leeuwen, R.: Global fixed-point proof of time-dependent density-functional theory. EPL 95, 13001 (2011)

    Article  ADS  Google Scholar 

  76. Ruggenthaler, M., Penz, M., van Leeuwen, R.: Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory. J. Phys. Condens. Matter 27, 203202 (2015)

    Article  ADS  Google Scholar 

  77. Colò, G.: Nuclear density functional theory. Adv. Phys. X 5, 1740061 (2020)

    Google Scholar 

Download references

Acknowledgements

We are indebted to an anonymous reviewer of the original manuscript for extensive comments that led to complete reshaping of our introductory discussion, for informing us of some references in the mathematical literature with which we were only dimly or not at all acquainted, and for stimulating us thereby to revise our presentation of several of the issues and questions. JWD, JW, and TST were supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0002139. SBT’s work on OFDFT was supported by that grant. ACC and HFR were supported by U.S. National Science Foundation grant DMR-1912618. SBT’s work on DFT fundamentals was supported by that grant. AAM was supported as part of the Center for Molecular Magnetic Quantum Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0019330. SBT’s work on fundamental issues related to spin and magnetic DFT was supported by that EFRC grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Trickey.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. This paper has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Generic overview of DFT

Appendix 1: Generic overview of DFT

Though most of what follows is completely generic to any quantum mechanical single-species system, our focus is on many-electron systems. We note, for example, that there is active work on nuclear many-body DFT; see Ref. [77] and references therein.

In the simplest case, the Hamiltonian describes N particles interacting pairwise (e.g., Coulomb interactions) subject to an external single-particle potential that couples to each particle, \(v_{\textrm{ext}}\varvec{(r)}\). (Any possible time dependence is left implicit to simplify the notation here.) The states of interest (wave function, density matrix) are “extremal” states (e.g., ground state, mechanical equilibrium) that are fixed by conditions involving the Hamiltonian. Hence, those states are functionals of \(v_\mathrm{{ext}}\). Properties of interest (e.g., energy, free energy, magnetization, etc.) are expectation values of appropriate operators in these states; hence, they inherit a functional dependence on \(v_\mathrm{{ext}}\). In particular, the number density \(n\varvec{(r)}\) defined in this way is a functional of \(v_{ext}\), denoted \(n(\varvec{r}|{v}_\mathrm{{ext}})\).

For reasons of insight and computational accessibility mentioned in the main text, it typically is preferable to express properties of interest as functionals of n rather than of \(v_\mathrm{{ext}}\). This change of variables can be implemented if there is a one-to-one relationship \(v_\mathrm{{ext}}\varvec{(r)}\leftrightarrow n(\varvec{r}|v_\mathrm{{ext}})\), e.g., via a Legendre transformation (subject to certain conditions on the functional representing the property considered). The first task of DFT thus is to establish this bijective relationship of the density and external potential. Two complementary approaches have been used.

The first (historically) [9] is based on variational principles showing that the density associated with a given potential provides the extremum of a certain functional (or action in the time-dependent case). The convexity of the functional assures the uniqueness required. A second approach is based on the force balance for these states, or specifically, the conservation law for the local momentum density. Both approaches accomplish the goal formally, but without complete mathematical rigor. Specifically, the function space for \(v_\mathrm{{ext}}\varvec{(r)}\) and that for \(n\varvec{(r)}\) have not been fully characterized within the proof. As detailed in the main text, this deficiency remains an open problem for all states considered: time-independent, time-dependent, ground state, and finite temperature.

The variational approach also requires conditions on the associated functional to allow functional differentiation. Existence of such functionals in general remains an open problem, related to the above-mentioned characterization of function spaces. The force balance approach does not require functional differentiation and thus avoids this difficulty.

Important practical problems remain after the bijectivity is proved. The first is to know the functional \(n(\varvec{r}|v_\mathrm{{ext}})\), and the second is to know the corresponding functional for the desired property (e.g., energy, free energy, etc.). These two tasks do not arise as separate problems in the variational approach because the extremum of the functional is identified as the primary property of interest (e.g., ground state energy or free energy). In the force balance approach, the density can be calculated, but the dependence of a property of interest upon that density remains to be fixed.

In practice, the calculation of the density for a given potential is accomplished by a mapping of the DFT for the interacting particle system to that for a non-interacting system, the Kohn–Sham representation. In the variational formulation, this is straightforward once the existence of the functional derivative (or its equivalent) can be established. Once again, this can be done in the force balance approach without need for the functional derivative.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wrighton, J., Albavera-Mata, A., Rodríguez, H.F. et al. Some problems in density functional theory. Lett Math Phys 113, 41 (2023). https://doi.org/10.1007/s11005-023-01649-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01649-z

Keywords

Mathematics Subject Classification

Navigation