Skip to main content

Configuration Interaction Approach to Atomic Nuclei: The Shell Model

  • Reference work entry
  • First Online:
Handbook of Nuclear Physics

Abstract

The atomic nucleus comprises protons and neutrons, with complex quantum many-body structure, arising from these two kinds of constituents and also from complicated forces binding them (nuclear forces). Nevertheless, atomic nuclei exhibit simple and beautiful features, unexpected from the complexities. The gap between the complexity and the simplicity/beauty can be filled by the shell model, the nuclear physics terminology of configuration Interaction (CI) approach. This article presents basic ideas and formulations of the shell model, up to recent developments. The computational aspect is quite crucial for the shell model, because the Schrödinger equation has to be solved with the nuclear forces and the two kinds of fermions. The traditional approach based on direct diagonalization of Hamiltonian matrix has been used since the 1950s with technical improvements. Besides this approach, a different CI methodology, Monte Carlo shell model (MCSM), was proposed in the 1990s and has been developed. These methodologies are explained in a pedagogical way. Ni and Cu isotopes are discussed as examples of various appearances of low-lying deformed states coexisting with spherical ground states. The T-plot analysis is explained as a unique way to unveil nuclear shapes contained in the MCSM wave functions. The original version of the shell model was conceived by Mayer and Jensen. Recent studies show definite departures from this picture: the evolution of the shell structure, or the shell evolution, in exotic nuclei. The shell evolution is briefly sketched, with a certain emphasis on the prominent role of the tensor force. The shell evolution is extended from a single-particle-type feature to highly correlated many-body features such as the collective motion leading to surface deformation, as referred to as type II shell evolution. Thus, this article overviews the basic and contemporary facets of the nuclear shell model in simple terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Agostini, G. Benato, J.A. Detwiler, J. Menéndez, F. Vissani, Toward the Discovery of Matter Creation with Neutrinoless Double-Beta Decay (2022). arXiv:2202.01787v1 [hep-ex]

    Google Scholar 

  • K. Arnswald et al., Phys. Lett. B 772, 599 (2017)

    ADS  Google Scholar 

  • A. Arima, S. Cohen, R.D. Lawson, M.H. Macfarlane, Nucl. Phys. A 108, 94 (1968)

    ADS  Google Scholar 

  • S.-O. Bäckman, G.E. Brown, J.A. Niskanen, Phys. Rep. 124, 1 (1985)

    ADS  Google Scholar 

  • R.K. Bansal, J.B. French, Phys. Lett. 11, 145 (1964)

    ADS  Google Scholar 

  • M. Baranger, Nucl. Phys. A 149, 225 (1970)

    ADS  Google Scholar 

  • G. Bertsch, J. Borysowicz, H. McManus, W.G. Love, Nucl. Phys. A 284, 399 (1977)

    ADS  Google Scholar 

  • D.R. Bes, R.A. Sorensen, Advances in Nuclear Physics, vol. 2, ed. by M. Baranger, E. Vogt (Plenum, New York, 1969; Springer, Berlin, 2012), pp. 129–222

    Google Scholar 

  • S. Bogner, T.T.S. Kuo, L. Coraggio, A. Covello, N. Itaco, Phys. Rev. C 65, 051301 (2002)

    ADS  Google Scholar 

  • S.K. Bogner, R.J. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)

    ADS  Google Scholar 

  • N. Bohr, Nature 137, 344 (1936a)

    ADS  Google Scholar 

  • N. Bohr, Nature 137, 351 (1936b)

    ADS  Google Scholar 

  • N. Bohr, Science 86, 161 (1937)

    ADS  Google Scholar 

  • A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26, 14 (1952)

    Google Scholar 

  • A. Bohr, Nobel Lectures, Physics 1971–1980, ed. by S. Lundqvist (World Scientific, Singapore, 1992), pp. 213–232

    Google Scholar 

  • A. Bohr, B.R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, 16 (1953)

    Google Scholar 

  • A. Bohr, B.R. Mottelson, Nuclear Structure I (Benjamin, New York, 1969)

    MATH  Google Scholar 

  • A. Bohr, B.R. Mottelson, Nuclear Structure II (Benjamin, New York, 1975)

    MATH  Google Scholar 

  • B.A. Brown, Phys. Rev. Lett. 85, 5300 (2000)

    ADS  Google Scholar 

  • B.A. Brown, W.D.M. Rae, Nucl. Data Sheets 120, 115 (2014)

    ADS  Google Scholar 

  • B.A. Brown, W.A. Richter, Phys. Rev. C 74, 034315 (2006)

    ADS  Google Scholar 

  • B.A. Brown, B.H. Wildenthal, Annu. Rev. Nucl. Part. Sci. 38, 29 (1988)

    ADS  Google Scholar 

  • B.A. Brown, N.J. Stone, J.R. Stone, I.S. Towner, M. Hjorth-Jensen, Phys. Rev. C 71, 044317 (2005)

    ADS  Google Scholar 

  • J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015)

    ADS  Google Scholar 

  • E. Caurier, F. Nowacki, Acta Phys. Polon. B 30, 705 (1999)

    ADS  Google Scholar 

  • E. Caurier, A. Zuker, A. Poves, G. Martiínez-Pinedo, Phys. Rev. C 50, 225 (1994)

    ADS  Google Scholar 

  • E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005)

    ADS  Google Scholar 

  • S. Chen et al., Phys. Rev. Lett. 123, 142501 (2019)

    ADS  Google Scholar 

  • S. Cohen, D. Kurath, Nucl. Phys. 73, 1 (1965)

    Google Scholar 

  • L. Coraggio, A. Covello, A. Gargano, N. Itaco, Phys. Rev. C 80, 021305 (2009)

    ADS  Google Scholar 

  • J.P. Elliott, Proc. R. Soc. 245, 128 (1958a)

    ADS  Google Scholar 

  • J.P. Elliott, Proc. R. Soc. 245, 562 (1958b)

    ADS  Google Scholar 

  • Evaluated nuclear structure data file, http://www.nndc.bnl.gov/ensdf/

  • P. Federman, S. Pittel, Phys. Lett. B 69, 385 (1977)

    ADS  Google Scholar 

  • F. Flavigny et al., Phys. Rev. C 91, 034310 (2015)

    ADS  Google Scholar 

  • J. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957)

    ADS  Google Scholar 

  • A. Gade, T. Glasmacher, Prog. Part. Nucl. Phys. 60, 161 (2008)

    ADS  Google Scholar 

  • M. Girod, P. Dessagne, M. Langevin, F. Pougheon, P. Roussel, Phys. Rev. C 37, 2600 (1988)

    ADS  Google Scholar 

  • H. Grawe, in The Euroschool Lectures on Physics with Exotic Beams, vol. I, ed. by J. Al-Khalili, E. Roeckl (Springer, Berlin/Heidelberg, 2004), pp. 33–75

    Google Scholar 

  • H.-W. Hammer, A. Nogga, A. Schwenk, Rev. Mod. Phys. 85, 197 (2013)

    ADS  Google Scholar 

  • O. Haxel, J.H.D. Jensen, H.E. Suess, Phys. Rev. 75, 1766 (1949)

    ADS  Google Scholar 

  • H. Hergart, S.K. Bogner, T.D. Morris, A. Schwenk, K. Tsukiyama, Phys. Rep. 621, 165 (2016)

    ADS  MathSciNet  Google Scholar 

  • K. Heyde, The Nuclear Shell Model (Springer, Berlin, 1994)

    Google Scholar 

  • K. Heyde, Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach (Institute of Physics Publishing, London, 2004)

    MATH  Google Scholar 

  • K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

    ADS  Google Scholar 

  • M. Hjorth-Jensen, T.T.S. Kuo, E. Osnes, Phys. Rep. 261, 125 (1995)

    ADS  Google Scholar 

  • M. Honma, T. Mizusaki, T. Otsuka, Phys. Rev. Lett. 75, 1284 (1995)

    ADS  Google Scholar 

  • M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Phys. Rev. C 65, 061301(R) (2002)

    Google Scholar 

  • M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Phys. Rev. C 69, 034335 (2004)

    ADS  Google Scholar 

  • M. Honma, T. Otsuka, T. Mizusaki, M. Hjorth-Jensen, Phys. Rev. C 80, 064323 (2009)

    ADS  Google Scholar 

  • A. Huck, G. Klotz, A. Knipper, C. Miehé, C. Richard-Serre, G. Walter, A. Poves, H.L. Ravn, G. Marguier, Phys. Rev. C 31, 2226 (1985)

    ADS  Google Scholar 

  • Y. Ichikawa et al., Nat. Phys. 15, 321 (2019)

    Google Scholar 

  • R.V.F. Janssens, Nature 435, 897 (2005)

    ADS  Google Scholar 

  • C.W. Johnson, W.E. Ormand, P.G. Krastev, Comput. Phys. Commun. 184, 2761 (2013)

    ADS  Google Scholar 

  • C. Kremer et al., Phys. Rev. Lett. 117, 172503 (2016)

    ADS  Google Scholar 

  • K. Kumar, M. Baranger, Nucl. Phys. A 110, 529 (1968)

    ADS  Google Scholar 

  • T.T.S. Kuo, G.E. Brown, Nucl. Phys. 85, 40 (1966)

    Google Scholar 

  • S.M. Lenzi, F. Nowacki, A. Poves, K. Sieja, Phys. Rev. C 82, 054301 (2010)

    ADS  Google Scholar 

  • S. Leoni et al., Phys. Rev. Lett. 118, 162502 (2017)

    ADS  Google Scholar 

  • S.N. Liddick et al., Phys. Rev. Lett. 97, 082501 (2006)

    ADS  Google Scholar 

  • R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011)

    ADS  Google Scholar 

  • B.A. Marsh et al., Nat. Phys. 14, 1163 (2018)

    Google Scholar 

  • M.G. Mayer, Phys. Rev. 75, 1969 (1949)

    ADS  Google Scholar 

  • S. Michimasa et al., Phys. Rev. Lett. 121, 022506 (2018)

    ADS  Google Scholar 

  • A.I. Morales et al., Phys. Lett. B 765, 328 (2017)

    ADS  Google Scholar 

  • S. Mărginean et al., Phys. Rev. Lett. 125, 102502 (2020)

    ADS  Google Scholar 

  • T. Nakamura, H. Sakurai, H. Watanabe, Prog. Part. Nucl. Phys. 97, 53 (2017)

    ADS  Google Scholar 

  • A. Nogga, S.K. Bogner, A. Schwenk, Phys. Rev. C 70, 061002 (2004)

    ADS  Google Scholar 

  • L. Olivier et al., Phys. Rev. Lett. 119, 192501 (2018)

    ADS  Google Scholar 

  • F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992)

    ADS  Google Scholar 

  • T. Otsuka, Physics 4, 258 (2022)

    ADS  Google Scholar 

  • T. Otsuka, Y. Tsunoda, J. Phys. G 43, 024009 (2016)

    ADS  Google Scholar 

  • T. Otsuka, T. Mizusaki, M. Honma, Phys. Rev. Lett. 81, 1588 (1998)

    ADS  Google Scholar 

  • T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, Y. Utsuno, Prog. Part. Nucl. Phys. 47, 319–400 (2001)

    ADS  Google Scholar 

  • T. Otsuka, R. Fujimoto, Y. Utsuno, B.A. Brown, M. Honma, T. Mizusaki, Phys. Rev. Lett. 87, 082502 (2001)

    ADS  Google Scholar 

  • T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi, Phys. Rev. Lett. 95, 232502 (2005)

    ADS  Google Scholar 

  • T. Otsuka, T. Suzuki, M. Honma, Y. Utsuno, N. Tsunoda, K. Tsukiyama, M. Hjorth-Jensen, Phys. Rev. Lett. 104, 012501 (2010)

    ADS  Google Scholar 

  • T. Otsuka, T. Suzuki, J.D. Holt, A. Schwenk, Y. Akaishi, Phys. Rev. Lett. 105, 032501 (2010)

    ADS  Google Scholar 

  • T. Otsuka, Y. Tsunoda, T. Abe, N. Shimizu, P. Van Duppen, Phys. Rev. Lett. 123, 222502 (2019)

    ADS  Google Scholar 

  • T. Otsuka, A. Gade, O. Sorlin, T. Suzuki, Y. Utsuno, Rev. Mod. Phys. 92, 015002 (2020)

    ADS  Google Scholar 

  • T. Otsuka, N. Shimizu, Y. Tsunoda, Phys. Rev. C 105, 014319 (2022)

    ADS  Google Scholar 

  • T. Otsuka, T. Abe, T. Yoshida, Y. Tsunoda, N. Shimizu, N. Itagaki, Y. Utsuno, J. Vary, P. Maris, H. Ueno, Nat. Commun. 13, 2234 (2022)

    ADS  Google Scholar 

  • A. Poves, A. Zuker, Phys. Rep. 70, 235 (1981)

    ADS  Google Scholar 

  • A. Poves, F. Nowacki, Y. Alhassid, Phys. Rev. C 101, 054307 (2020)

    ADS  Google Scholar 

  • I. Ragnarsson, S. Nilsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  • J. Rainwater, Phys. Rev. 79, 432 (1950)

    ADS  Google Scholar 

  • W.A. Richter, S. Mkhize, B.A. Brown, Phys. Rev. C 78, 064302 (2008)

    ADS  Google Scholar 

  • P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)

    Google Scholar 

  • E. Sahin et al., Phys. Rev. Lett. 118, 242502 (2017)

    ADS  Google Scholar 

  • J.P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004)

    ADS  Google Scholar 

  • D. Seweryniak et al., Phys. Rev. Lett. 99, 022504 (2007)

    ADS  Google Scholar 

  • N. Shimizu, Genshikaku Kenkyu (in Japanese) 58, 96 (2013)

    Google Scholar 

  • N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka, T. Abe, M. Honma, Phys. Rev. C 82, 061305(R) (2010)

    Google Scholar 

  • N. Shimizu, T. Abe, Y. Tsunoda, Y. Utsuno, T. Yoshida, T. Mizusaki, M. Honma, T. Otsuka, Prog. Theor. Exp. Phys. 2012, 01A205 (2012)

    Google Scholar 

  • N. Shimizu, T. Abe, M. Honma, T. Otsuka, T. Togashi, Y. Tsunoda, Y. Utsuno, T. Yoshida, Phys. Scr. 92, 063001 (2017)

    ADS  Google Scholar 

  • N. Shimizu, T. Mizusaki, T. Utsuno, Y. Tsunoda, Comput. Phys. Commun. 244, 372 (2019)

    ADS  Google Scholar 

  • N. Shimizu, Y. Tsunoda, Y. Utsuno, T. Otsuka, Phys. Rev. C 103, 014312 (2021)

    ADS  Google Scholar 

  • P. Singh et al., Phys. Rev. Lett. 121, 192501 (2018)

    ADS  Google Scholar 

  • N.A. Smirnova, B. Bally, K. Heyde, F. Nowacki, K. Sieja, Phys. Lett. B 686, 109 (2010)

    ADS  Google Scholar 

  • O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008)

    ADS  Google Scholar 

  • D. Steppenbeck et al., Nature 502, 207 (2013)

    ADS  Google Scholar 

  • M. Storm, A. Watt, R. Whitehead, J. Phys. G 9, L165 (1983)

    ADS  Google Scholar 

  • K. Takayanagi, Nucl. Phys. A 852, 61 (2011a)

    ADS  Google Scholar 

  • K. Takayanagi, Nucl. Phys. A 864, 91 (2011b)

    ADS  Google Scholar 

  • I. Talmi, Rev. Mod. Phys. 34, 704 (1962)

    ADS  Google Scholar 

  • R. Taniuchi et al., Nature 569, 53 (2019)

    ADS  Google Scholar 

  • T. Togashi, Y. Tsunoda, T. Otsuka, N. Shimizu, Phys. Rev. Lett. 117, 172502 (2016)

    ADS  Google Scholar 

  • T. Togashi, Y. Tsunoda, T. Otsuka, N. Shimizu, M. Honma, Phys. Rev. Lett. 121, 062501 (2018)

    ADS  Google Scholar 

  • Y. Tsunoda, T. Otsuka, Phys. Rev. C 103, L021303 (2021)

    ADS  Google Scholar 

  • N. Tsunoda, K. Takayanagi, M. Hjorth-Jensen, T. Otsuka, Phys. Rev. C 89, 024313 (2014)

    ADS  Google Scholar 

  • Y. Tsunoda, T. Otsuka, N. Shimizu, M. Honma, Y. Utsuno, Phys. Rev. C 89, 031301(R) (2014)

    Google Scholar 

  • N. Tsunoda, T. Otsuka, N. Shimizu, M. Hjorth-Jensen, K. Takayanagi, T. Suzuki, Phys. Rev. C 95, 021304(R) (2017)

    Google Scholar 

  • N. Tsunoda, T. Otsuka, K. Takayanagi, N. Shimizu, T. Suzuki, Y. Utsuno, S. Yoshida, H. Ueno, Nature 587, 66 (2020)

    ADS  Google Scholar 

  • Y. Utsuno, N. Shimizu, T. Otsuka, T. Yoshida, Y. Tsunoda, Phys. Rev. Lett. 114, 032501 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by MEXT as “Program for Promoting Researches on the Super computer Fugaku” (Simulation for basic science: from fundamental laws of particles to creation of nuclei) and by JICFuS. This work was supported by JSPS KAKENHI Grant Numbers JP19H0514, JP21H00117.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yusuke Tsunoda or Takaharu Otsuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tsunoda, Y., Otsuka, T. (2023). Configuration Interaction Approach to Atomic Nuclei: The Shell Model. In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics . Springer, Singapore. https://doi.org/10.1007/978-981-19-6345-2_17

Download citation

Publish with us

Policies and ethics