Skip to main content
Log in

The Smad pathway in transforming growth factor-β signaling

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The Smad pathway is involved in transforming growth factor-β (TGF-β) signal transduction. The Smad complex binds with the promoter of target gene to modulate gene transcription. Various transcriptional coactivators and corepressors associate directly with Smads for appropriate binding of Smads to target promoters and regulation of Smads transcriptional activities. The ultimate degradation of Smads mediated by the ubiquitin-proteasome pathway (UPP) has been established as a mechanism to shut off the Smad pathway. In addition to the Smad pathway, TGF-β can also activate other signaling pathway such as the MAPK pathway. The cross-talk of the Smad pathway with other signaling pathways constitutes an important mechanism for the regulatory network of TGF-β signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Massague, J., TGF-β signal transduction, Annu. Rev. Biochem., 1998, 67: 753–791.

    Article  PubMed  CAS  Google Scholar 

  2. Balemans, W., Van Hul, W., Extracellular regulation of BMP signaling in vertebrates: A cocktail of modulators, Dev. Biol., 2002, 250(2): 231.

    PubMed  CAS  Google Scholar 

  3. Iwamoto, T., Oshima, K., Seng, T. et al., STAT and SMAD signaling in cancer, Histol. Histopathol., 2002, 17(3): 887–895.

    PubMed  CAS  Google Scholar 

  4. Ten Dijke, P., Goumans, M. J., Itoh, F. et al., Regulation of cell proliferation by Smad proteins, J. Cell. Physiol., 2002, 191(1): 1–16.

    Article  PubMed  Google Scholar 

  5. Mathews, L. S., Vale, W. W., Expression cloning of an activin receptor, a predicted transmembrane serine kinase, Cell, 1991, 65(6): 973–982.

    Article  PubMed  CAS  Google Scholar 

  6. Lin, H. Y., Wang, X. F., Ng-Eaton, E. et al., Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase, Cell, 1992, 68(4): 775–785.

    Article  PubMed  CAS  Google Scholar 

  7. Wrana, J. L., Attisano, L., The Smad pathway, Cytokine Growth Factor Rev., 2000, 11(1-2): 5–13.

    Article  PubMed  CAS  Google Scholar 

  8. Wrana, J. L., Attisano, L., Wieser, R. et al., Mechanism of activation of the TGF-β receptor, Nature, 1994, 370(6488): 341–347.

    Article  PubMed  CAS  Google Scholar 

  9. Zhu, H. J., Burgess, A. W., Regulation of transforming growth factor-β signaling, Mol. Cell. Biol. Res. Commun., 2001, 4(6): 321–330.

    Article  PubMed  CAS  Google Scholar 

  10. Lux, A., Attisano, L., Marchuk, D. A., Assignment of transforming growth factor β1 and β3 and a third new ligand to the type I receptor ALK-1, J. Biol. Chem., 1999, 274(15): 9984–9992.

    Article  PubMed  CAS  Google Scholar 

  11. Barbara, N. P., Wrana, J. L., Letarte, M., Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-β superfamily, J. Biol. Chem., 1999, 274(2): 584–594.

    Article  PubMed  CAS  Google Scholar 

  12. Zwaagstra, J. C., El-Alfy, M., O’Connor-McCourt, M. D., Transforming growth factor (TGF)-β 1 internalization: Modulation by ligand interaction with TGF-β receptors types I and II and a mechanism that is distinct from clathrin-mediated endocytosis, J. Biol. Chem., 2001, 276(29): 27237–27245.

    Article  PubMed  CAS  Google Scholar 

  13. Zwaagstra, J. C., Guimond, A., O’Connor-McCourt, M. D., Predominant intracellular localization of the type I transforming growth factor-β receptor and increased nuclear accumulation after growth arrest, Exp. Cell Res., 2000, 258(1): 121–134.

    Article  PubMed  CAS  Google Scholar 

  14. Wakefield, L. M., Piek, E., Bottinger, E. P., TGF-β signaling in mammary gland development and tumorigenesis, J. Mammary Gland Biol. Neoplasia, 2001, 6(1): 67–82.

    Article  PubMed  CAS  Google Scholar 

  15. Dennler, S., Goumans, M. J., ten Dijke, P., Transforming growth factor β signal transduction, J. Leukoc. Biol., 2002, 71(5): 731–740.

    PubMed  CAS  Google Scholar 

  16. de Caestecker, M. P., Piek, E., Roberts, A. B., Role of transforming growth factor-β signaling in cancer, J. Natl. Cancer Inst., 2000, 92(17): 1388–1402.

    Article  PubMed  Google Scholar 

  17. Raftery, L. A., Twombly, V., Wharton, K. et al., Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila, Genetics, 1995, 139(1): 241–254.

    PubMed  CAS  Google Scholar 

  18. Sekelsky, J. J., Newfeld, S. J., Raftery, L. A. et al., Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster, Genetics, 1995, 139(3): 1347–1358.

    PubMed  CAS  Google Scholar 

  19. Savage, C., Das, P., Finelli, A. L. et al., Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor β pathway components, Proc. Natl. Acad. Sci. U.S.A., 1996, 93(2): 790–794.

    Article  PubMed  CAS  Google Scholar 

  20. Derynck, R., Gelbart, W. M., Harland, R. M. et al., Nomenclature: Vertebrate mediators of TGFβ family signals, Cell, 1996, 87(2): 173.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, W., Fu, X., Sheng, Z., Review of current progress in the structure and function of Smad proteins, Chin. Med. J., 2002, 115(3): 446–450.

    PubMed  CAS  Google Scholar 

  22. Moustakas, A., Souchelnytskyi, S., Heldin, C. H., Smad regulation in TGF-β signal transduction, J. Cell Sci., 2001, 114(Pt 24): 4359–4369.

    PubMed  CAS  Google Scholar 

  23. Lo, R. S., Chen, Y. G., Shi, Y. et al., The L3 loop: A structural motif determining specific interactions between SMAD proteins and TGF-β receptors, EMBO. J., 1998, 17(4): 996–1005.

    Article  PubMed  CAS  Google Scholar 

  24. Shi, Y., Hata, A., Lo, R. S. et al., A structural basis for mutational inactivation of the tumour suppressor Smad4, Nature, 1997, 388(6637): 87–93.

    Article  PubMed  CAS  Google Scholar 

  25. Maurice, D., Pierreux, C. E., Howell, M. et al., Loss of Smad4 function in pancreatic tumors: C-terminal truncation leads to decreased stability, J. Biol. Chem., 2001, 276(46): 43175–43181.

    Article  PubMed  CAS  Google Scholar 

  26. Zimmerman, C. M., Padgett, R. W., Transforming growth factor β signaling mediators and modulators, Gene, 2000, 249(1-2): 17–30.

    Article  PubMed  CAS  Google Scholar 

  27. Kretzschmar, M., Doody, J., Timokhina, I. et al., A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras, Genes Dev., 1999, 13(7): 804–816.

    Article  PubMed  CAS  Google Scholar 

  28. Souchelnytskyi, S., Tamaki, K., Engstrom, U. et al., Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-β signaling, J. Biol. Chem., 1997, 272(44): 28107–28115.

    Article  PubMed  CAS  Google Scholar 

  29. Hata, A., Lo, R. S., Wotton, D. et al., Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4, Nature, 1997, 388(6637): 82–87.

    Article  PubMed  CAS  Google Scholar 

  30. de Caestecker, M. P., Parks, W. T., Frank, C. J. et al., Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases, Genes Dev., 1998, 12(11): 1587–1592.

    Article  PubMed  Google Scholar 

  31. Zhu, H., Kavsak, P., Abdullah, S. et al., A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation, Nature, 1999, 400(6745): 687–693.

    Article  PubMed  CAS  Google Scholar 

  32. de Caestecker, M. P., Yahata, T., Wang, D. et al., The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain, J. Biol. Chem., 2000, 275(3): 2115–2122.

    Article  PubMed  Google Scholar 

  33. Bauer, M., Schuppan, D., TGFβl in liver fibrosis: Time to change paradigms? FEBS. Lett., 2001, 502(1–2): 1–3.

    Article  PubMed  CAS  Google Scholar 

  34. Tsukazaki, T., Chiang, T. A., Davison, A. F. et al., SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor, Cell, 1998, 95(6): 779–791.

    Article  PubMed  CAS  Google Scholar 

  35. Burd, C. G., Emr, S. D., Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains, Mol. Cell, 1998, 2(1): 157–162.

    Article  PubMed  CAS  Google Scholar 

  36. Correia, J. J., Chacko, B. M., Lam, S. S. et al., Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homoand hetero-trimerization, Biochemistry, 2001, 40(5): 1473–1482.

    Article  PubMed  CAS  Google Scholar 

  37. Tada, K., Inoue, H., Ebisawa, T. et al., Region between a-helices 3 and 4 of the mad homology 2 domain of Smad4: Functional roles in oligomer formation and transcriptional activation, Genes Cells, 1999, 4(12): 731–741.

    Article  PubMed  CAS  Google Scholar 

  38. Xiao, Z., Liu, X., Henis, Y. I. et al., A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation, Proc. Natl. Acad. Sci. U.S.A., 2000, 97(14): 7853–7858.

    Article  PubMed  CAS  Google Scholar 

  39. Liu, F., Pouponnot, C., Massague, J., Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes, Genes Dev, 1997, 11(23): 3157–3167.

    Article  PubMed  CAS  Google Scholar 

  40. Wells, R. G., Fibrogenesis, V., TGF-β signaling pathways, Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(5): G845–850.

    PubMed  CAS  Google Scholar 

  41. Chen, C. R., Kang, Y., Massague, J., Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor β growth arrest program, Proc. Natl. Acad. Sci. U.S.A., 2001, 98(3): 992–999.

    Article  PubMed  CAS  Google Scholar 

  42. Feng, X. H., Lin, X., Derynck, R., Smad2, Smad3 and Smad4 cooperate with Spl to induce pl5 (Ink4B) transcription in response to TGF-β, EMBO. J., 2000, 19(19): 5178–5193.

    Article  PubMed  CAS  Google Scholar 

  43. Pardali, K., Kurisaki, A., Moren, A. et al., Role of Smad proteins and transcription factor Spl in p21(Wafl/Cipl) regulation by transforming growth factor-β, J. Biol. Chem., 2000, 275(38): 29244–29256.

    Article  PubMed  CAS  Google Scholar 

  44. White, L. A., Mitchell, T. I., Brinckerhoff, C. E., Transforming growth factor β inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription, Biochim. Biophys. Acta, 2000, 1490(3): 259–268.

    PubMed  CAS  Google Scholar 

  45. Zawel, L., Dai, J. L., Buckhaults, P. et al., Human Smad3 and Smad4 are sequence-specific transcription activators, Mol. Cell, 1998, 1(4): 611–617.

    Article  PubMed  CAS  Google Scholar 

  46. Kusanagi, K., Kawabata, M., Mishima, H. K. et al., α-helix 2 in the amino-terminal mad homology 1 domain is responsible for specific DNA binding of Smad3, J. Biol. Chem., 2001, 276(30): 28155–28163.

    Article  PubMed  CAS  Google Scholar 

  47. Yagi, K., Goto, D., Hamamoto, T. et al., Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3, J. Biol. Chem., 1999, 274(2): 703–709.

    Article  PubMed  CAS  Google Scholar 

  48. Labbe, E., Silvestri, C., Hoodless, P. A. et al., Smad2 and Smad3 positively and negatively regulate TGF β-dependent transcription through the forkhead DNA-binding protein FAST2, Mol. Cell, 1998, 2(1): 109–120.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, X., Weisberg, E., Fridmacher, V. et al., Smad4 and FAST-1 in the assembly of activin-responsive factor, Nature, 1997, 389(6646): 85–89.

    Article  PubMed  CAS  Google Scholar 

  50. Itoh, S., Itoh, F., Goumans, M. J. et al., Signaling of transforming growth factor-β family members through Smad proteins, Eur. J. Biochem., 2000, 267(24): 6954–6967.

    Article  PubMed  CAS  Google Scholar 

  51. Wong, C., Rougier-Chapman, E. M., Frederick, J. P. et al., Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor β, Mol. Cell. Biol., 1999, 19(3): 1821–1830.

    PubMed  CAS  Google Scholar 

  52. Hanai, J., Chen, L. F., Kanno, T. et al., Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Cα promoter, J. Biol. Chem., 1999, 274(44): 31577–31582.

    Article  PubMed  CAS  Google Scholar 

  53. Hata, A., Seoane, J., Lagna, G. et al., OAZ uses distinct DNA-and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways, Cell, 2000, 100(2): 229–240.

    Article  PubMed  CAS  Google Scholar 

  54. Yanagisawa, J., Yanagi, Y., Masuhiro, Y. et al., Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators, Science, 1999, 283(5406): 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  55. Hua, X., Liu, X., Ansari, D. O. et al., Synergistic cooperation of TFE3 and smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene, Genes Dev., 1998, 12(19): 3084–3095.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang, W., Liu, H. T., MAPK signal pathways in the regulation of cell proliferation in mammalian cells, Cell Res., 2002, 12(1): 9–18.

    Article  PubMed  CAS  Google Scholar 

  57. Kaji, H., Canaff, L., Lebrun, J. J. et al., Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β signaling, Proc. Natl. Acad. Sci. U.S.A., 2001, 98(7): 3837–3842.

    Article  PubMed  CAS  Google Scholar 

  58. Liberati, N. T., Moniwa, M., Borton, A. J. et al., An essential role for Mad homology domain 1 in the association of Smad3 with histone deacetylase activity, J. Biol. Chem., 2001, 276(25): 22595–22603.

    Article  PubMed  CAS  Google Scholar 

  59. Zimmerman, C. M., Kariapper, M. S., Mathews, L. S., Smad proteins physically interact with calmodulin, J. Biol. Chem., 1998, 273(2): 677–680.

    Article  PubMed  CAS  Google Scholar 

  60. Stroschein, S. L., Wang, W., Zhou, S. et al., Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein, Science, 1999, 286(5440): 771–774.

    Article  PubMed  CAS  Google Scholar 

  61. Leong, G. M., Subramaniam, N., Figueroa, J. et al., Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-β-dependent transcription, J. Biol. Chem., 2001, 276(21): 18243–18248.

    Article  PubMed  CAS  Google Scholar 

  62. Hata, A., Lagna, G., Massague, J. et al., Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor, Genes Dev., 1998, 12(2): 186–197.

    Article  PubMed  CAS  Google Scholar 

  63. Kimura, N., Matsuo, R., Shibuya, H. et al., BMP2-induced apoptosis is mediated by activation of the TAKl-p38 kinase pathway that is negatively regulated by Smad6, J. Biol. Chem., 2000, 275(23): 17647–17652.

    Article  PubMed  CAS  Google Scholar 

  64. Kavsak, P., Rasmussen, R. K., Causing, C. G. et al., Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF β receptor for degradation, Mol. Cell, 2000, 6(6): 1365–1375.

    Article  PubMed  CAS  Google Scholar 

  65. Ebisawa, T., Fukuchi, M., Murakami, G. et al., Smurfl interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation, J. Biol. Chem., 2001, 276(16): 12477–12480.

    Article  PubMed  CAS  Google Scholar 

  66. Lin, X., Liang, M., Feng, X. H., Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-β signaling, J. Biol. Chem., 2000, 275(47): 36818–36822.

    Article  PubMed  CAS  Google Scholar 

  67. Bonni, S., Wang, H. R., Causing, C. G. et al., TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation, Nat. Cell. Biol., 2001, 3(6): 587–595.

    Article  PubMed  CAS  Google Scholar 

  68. Fukuchi, M., Imamura, T., Chiba, T. et al., Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins, Mol. Biol. Cell., 2001, 12(5): 1431–1443.

    PubMed  CAS  Google Scholar 

  69. Mulder, K. M., Role of Ras and Mapks in TGFβ signaling, Cytokine Growth Factor Rev, 2000, 11(1-2): 23–35

    Article  PubMed  CAS  Google Scholar 

  70. Attisano, L., Wrana, J. L., Signal transduction by the TGF-β superfamily, Science, 2002, 296(5573): 1646–1647.

    Article  PubMed  CAS  Google Scholar 

  71. Hu, P. P., Shen, X., Huang, D. et al., The MEK pathway is required for stimulation of p21(WAFl/CIPl) by transforming growth factor-β, J. Biol. Chem., 1999, 274(50): 35381–35387.

    Article  PubMed  CAS  Google Scholar 

  72. Lehmann, K., Janda, E., Pierreux, C. E. et al., Raf induces TGFβ production while blocking its apoptotic but not invasive responses: Amechanism leading to increased malignancy in epithelial cells, Genes Dev., 2000, 14(20): 2610–2622.

    Article  PubMed  CAS  Google Scholar 

  73. Hocevar, B. A., Brown, T. L., Howe, P. H., TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway, EMBO. J., 1999, 18(5): 1345–1356.

    Article  PubMed  CAS  Google Scholar 

  74. Axmann, A., Seidel, D., Reimann, T. et al., Transforming growth factor-β1-induced activation of the Raf-MEK-MAPK signaling pathway in rat lung fibroblasts via a PKC-dependent mechanism, Biochem. Biophys. Res. Commun., 1998, 249(2): 456–460.

    Article  PubMed  CAS  Google Scholar 

  75. Wakefield, L. M., Roberts, A. B., TGF-β signaling: Positive and negative effects on tumorigenesis, Curr. Opin. Genet. Dev., 2002, 12(1): 22–29.

    Article  PubMed  CAS  Google Scholar 

  76. Brunet, A., Datta, S. R., Greenberg, M. E., Transcription-dependent and independent control of neuronal survival by the PI3K-Akt signaling pathway, Curr. Opin. Neurobiol., 2001, 11(3): 297–305.

    Article  PubMed  CAS  Google Scholar 

  77. Vinals, F., Pouyssegur, J., Transforming growth factor βl (TGF-βl) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-α signaling, Mol. Cell. Biol., 2001, 21(21): 7218–7230.

    Article  PubMed  CAS  Google Scholar 

  78. Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A. et al., Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration, J. Biol. Chem., 2000, 275(47): 36803–36810.

    Article  PubMed  CAS  Google Scholar 

  79. Iglesias, M., Frontelo, P., Gamallo, C. et al., Blockade of Smad4 in transformed keratinocytes containing a Ras oncogene leads to hyperactivation of the Ras-dependent Erk signalling pathway associated with progression to undifferentiated carcinomas, Oncogene, 2000, 19(36): 4134–4145.

    Article  PubMed  CAS  Google Scholar 

  80. Saha, D., Datta, P. K., Beauchamp, R. D., Oncogenic ras represses transforming growth factor-β /Smad signaling by degrading tumor suppressor Smad4, J. Biol. Chem., 2001, 276(31): 29531–29537.

    Article  PubMed  CAS  Google Scholar 

  81. Lo, R. S., Wotton, D., Massague, J., Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF, EMBO. J., 2001, 20(1-2): 128–136.

    Article  PubMed  CAS  Google Scholar 

  82. Engel, M. E., McDonnell, M. A., Law, B. K. et al., Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription, J. Biol. Chem., 1999, 274(52): 37413–37420.

    Article  PubMed  CAS  Google Scholar 

  83. Liu, X., Yue, J., Frey, R. S. et al., Transforming growth factor β signaling through Smad1 in human breast cancer cells, Cancer Res., 1998, 58(20): 4752–4757.

    PubMed  CAS  Google Scholar 

  84. Yue, J., Frey, R. S., Mulder, K. M., Cross-talk between the Smadl and Ras/MEK signaling pathways for TGFβ, Oncogene, 1999, 18(11): 2033–2037.

    Article  PubMed  CAS  Google Scholar 

  85. Ulloa, L., Doody, J., Massague, J., Inhibition of transforming growth factor-β/SMAD signalling by the interferon-y/STAT pathway, Nature, 1999, 397(6721): 710–713.

    Article  PubMed  CAS  Google Scholar 

  86. Nakashima, K., Yanagisawa, M., Arakawa, H. et al., Synergistic signaling in fetal brain by STAT3-Smadl complex bridged by p300, Science, 1999, 284(5413): 479–482.

    Article  PubMed  CAS  Google Scholar 

  87. Ghosh, A. K., Yuan, W., Mori, Y. et al., Antagonistic regulation of type I collagen gene expression by interferon-λ and transforming growth factor-β. Integration at the level of p300/CBP transcriptional coactivators, J. Biol. Chem., 2001, 276(14): 11041–11048.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Wang, H. & Zhu, C. The Smad pathway in transforming growth factor-β signaling. Sci. China Ser. C.-Life Sci. 46, 449–463 (2003). https://doi.org/10.1360/02yc0181

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02yc0181

Keywords

Navigation