Skip to main content
Log in

Influence of Grinding and Sonication on the Crystal Structure of Talc

  • Published:
Clays and Clay Minerals

Abstract

Talc is an important industrial mineral with a broad range of applications. Particle size and crystal structure have a significant influence on the potential uses. The present study examined the influence of grinding and ultrasound treatment on talc from a new deposit, Gemerská Poloma, in Slovakia. The general knowledge that grinding produces progressive structural disorder leading to amorphization, whereas sonication has a negligible effect on the talc crystal structure, was confirmed by X-ray diffraction (XRD), infrared (IR) spectroscopy, and transmission electron microscopy (TEM). Partial reduction of particle size along with delamination was observed by XRD after sonication, low-angle laser light scattering (LALLS), scanning electron microscopy (SEM), and TEM. The specific surface area (SSA) increased slightly after prolonged sonication, but grinding initially caused a rapid increase in SSA followed by a drastic decrease after prolonged grinding time of up to 120 min which was attributed to the aggregation of amorphized talc. Sonication and grinding had different influences on the thermal behavior of the talc studied. Sonication decreased slightly the dehydroxylation temperature, whereas grinding added a significant mass loss at low temperature, arising from the dehydration of hydrated Mg cations released from the talc structure during amorphization. The initial high whiteness value of talc decreased slightly after grinding or sonication. Thermogravimetry was suggested as a useful tool to track and predict changes in the talc structure upon sonication and grinding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, F., Reinert, L., Levêque, J.-M., Duclaux, L., Muller, F., Saeed, S., and Shah, S.S. (2014) Effect of sonication conditions: Solvent, time, temperature and reactor type on the preparation of micron-sized vermiculite particles. Ultrasonics Sonochemistry, 21, 1002–1009.

    Article  Google Scholar 

  • Aglietti, E.F. (1994) The effect of dry grinding on the structure of talc. Applied Clay Science, 9, 139–147.

    Article  Google Scholar 

  • Allen, T. (2003) Powder Sampling and Particle Size Analysis. 1st edition, Elsevier Science, Amsterdam, 682 pp.

    Google Scholar 

  • Balek, V., Šubrt, J., Peérez-Maqueda, L.A., Benes., M., Bountseva, I.M., Beckman, I.N., and Pérez-Rodríguez, J.L. (2008) Thermal behavior of ground talc mineral. Journal of Mining and Metallurgy, Section B: Metallurgy, 44, 7–17.

    Google Scholar 

  • Brindley, G.W. and Lemaitre, J. (1987) Thermal oxidation and reduction reactions of clay minerals. Pp. 319–370 in: Chemistry of Clays and Clay Minerals (A.C.D. Newman, editor). Monograph 6, Mineralogical Society, London.

    Google Scholar 

  • Brunauer, S., Emmett, P.H., and Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  Google Scholar 

  • Bukas, V.J., Tsampodimou, M., Gionis, V., and Chryssikos, G.D. (2013) Synchronous ATR infrared and NIR-spectroscopy investigation of sepiolite upon drying. Vibrational Spectroscopy, 68, 51–60.

    Article  Google Scholar 

  • Čavajda, V. (2014) Characterization of talc from Gemerská Poloma deposit. PhD thesis, Comenius University, Bratislava, 139 pp.

  • Chen, D., Sharma, S.K., and Mudhoo, A. (2012) Handbook on Applications of Ultrasound: Sonochemistry for Sustainability. CRC Press, Boca Raton, Florida, USA, 718 pp.

    Google Scholar 

  • Christidis, G.E., Makri, P., and Perdikatsis, V. (2004a) Influence of milling on the structure and colour properties of talc, bentonite and calcite white fillers. Clay Minerals 39, 163–175.

    Article  Google Scholar 

  • Christidis, G.E., Sakellariou, N., Repouskou, E., and Marcopoulos, T.H. (2004b) Influence of organic matter and iron oxides on the colour properties of a micritic limestone from Kefalonia. Bulletin of the Geological Society Greece, 36, 72–79.

    Article  Google Scholar 

  • CIE (International Commission on Illumination) (2004) Colorimetry. CIE 15, Technical Report, 3rd edition, 72 pp.

  • Dellisanti, F. and Valdrè, G. (2008) Linear relationship between thermo-dehydroxylation and induced-strain by mechanical processing in vacuum: The case of industrial kaolinite, talc and montmorillonite. International Journal of Mineral Processing, 88, 94–99.

    Article  Google Scholar 

  • Dellisanti, F., Valdrè, G., and Mondonico, M. (2009) Changes of the main physical and technological properties of talc due to mechanical strain. Applied Clay Science 42, 398–404.

    Article  Google Scholar 

  • Dellisanti, F., Minguzzi, V., and Valdrè, G. (2011) Mechanical and thermal properties of a nanopowder talc compound produced by controlled ball milling. Journal of Nanoparticle Research, 13, 5919–5926.

    Article  Google Scholar 

  • Drits, V.A. and Derkowski, A. (2015) Kinetic behavior of partially dehydroxylated kaolinite. American Mineralogist, 100, 883–896.

    Article  Google Scholar 

  • Drits, V.A., Eberl, D.D., and Środoń, J. (1998) XRD measurement of mean thickness, thickness distribution and strain for illite and illite/smectite crystallites by the Bertau—Warren—Averbach technique. Clays and Clay Minerals, 46, 38–50.

    Article  Google Scholar 

  • Drits, V.A., Derkowski, A., and McCarty, D.K. (2012) Kinetics of partial dehydroxylation in dioctahedral 2:1 layer clay minerals. American Mineralogist, 97, 930–950.

    Article  Google Scholar 

  • Eberl, D.D. (2003) User’s guide to RockJock — a program for determining quantitative mineralogy from powder X-ray diffraction data. Open-File Report 03-78, U.S. Geological Survey.

  • Eberl, D.D., Drits, V.A., Środoń, J., and Nüesch, R. (1996) MudMaster: a program for calculating crystallite size distributions and strain from the shapes of X-ray diffraction peaks. Open-File Report 96–171, U.S. Geological Survey.

  • Evans, B.W. and Guggenheim, S. (1988) Talc, pyrophyllite and related minerals. Pp. 225–295 in: Hydrous Phyllosilicates (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Chantilly, Virginia, USA.

    Google Scholar 

  • Farmer, V.C. (1974) Layer silicates. Pp. 331–363 in: Infrared Spectra of Minerals (V.C. Farmer, editor). Mineralogical Society, London.

    Chapter  Google Scholar 

  • Filippov, L.O., Joussemet, R., Irannajad, M., Houot, R., and Thomas, A. (1999) An approach of the whiteness quantification of crushed and floated talc concentrate. Powder Technology. 105, 106–112.

    Article  Google Scholar 

  • Glasson, D.R. (1981) Vacuum balance studies of milled material and mechanochemical reactions. Thermochimica Acta, 51, 45–52.

    Article  Google Scholar 

  • Gregg, S.J. (1968) Surface chemical study of comminuted and compacted solids. Chemistry and Industry, 11, 611–617.

    Google Scholar 

  • Gümüştaş, S., Köseoğlu, K., Yalçinkaya, E.E., and Balcan, M. (2014) Characterization and dielectric properties of sodium fluoride doped talc. Clay Minerals, 49, 551–558.

    Article  Google Scholar 

  • Jamil, N.H. and Palaniandy, S. (2010) Acid medium sonication: A method for the preparation of low density talc nanosheets. Powder Technology, 200, 87–90.

    Article  Google Scholar 

  • Jamil, N.H. and Palaniandy, S. (2011) Comparative study of water-based and acid-based sonications on structural changes of talc. Applied Clay Science, 51, 399–406.

    Article  Google Scholar 

  • Jaynes, W.F. and Boyd, S.A. (1991) Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays and Clay Minerals, 39, 428–436.

    Article  Google Scholar 

  • Kano, J. and Saito, F. (1998) Correlation of powder characteristics of talc during planetary ball milling with the impact energy of the balls simulated by the particle element method. Powder Technology, 98, 166–170.

    Article  Google Scholar 

  • Kilík, J. (1997) Geologická charakteristika mastencového ložiska Gemerské Poloma — Dlhá dolina. Acta Montanistica Slovaca, 1, 71–80.

    Google Scholar 

  • Kogel, J.E., Trivedi, N.C., Barker, J.M., and Krukowski, S.T., editors (2006) Industrial Minerals and Rocks: Commodities, Markets, and Uses. 7th edition. Society for Mining, Metallurgy, and Exploration, Inc., Littleton, Colorado, USA, 1548 pp.

  • Kogure, T., Kameda, J., Matsui, T., and Miyawaki, R. (2006) Stacking structure in disordered talc: interpretation of its X-ray diffraction pattern by using pattern simulation and high-resolution transmission electron microscopy. American Mineralogist, 91, 1363–1370.

    Article  Google Scholar 

  • Kuligiewicz, A., Derkowski, A., and Kruszewski, L. (2013) How dry is a “dry” smectite. 50th Annual Meeting of the Clay Minerals Society, 6–10 October 2013, Urbana-Champaign, Illinois, USA.

  • Kumar, A.P., Depan, D., Singhtomer, N., and Singh, R.P. (2009) Nanoscale particles for polymer degradation and stabilization — Trends and future perspectives. Progress in Polymer Science, 34, 479–515.

    Article  Google Scholar 

  • Liu, X., Liu, X., and Hu, Y. (2014) Investigation of the thermal decomposition of talc. Clays and Clay Minerals, 62, 137–144.

    Article  Google Scholar 

  • McCarthy, F.E., Genco, A.N., and Reade, H.E. (2006) Talc. Pp. 971–986 in: Industrial Minerals and Rocks: Commodities, Markets, and Uses (J. Elzea Kogel, N.C. Trivedi, J.M. Barker, and S.T. Krukowski, editors). 7th edition. Society for Mining, Metallurgy, and Exploration, Inc., Littleton, Colorado, USA.

    Google Scholar 

  • Mekhamer, W.K. (2010) The colloidal stability of raw bentonite deformed mechanically by ultrasound. Journal of Saudi Chemical Society, 14, 301–306.

    Article  Google Scholar 

  • Murray, H.H. (2007) Applied Clay Mineralogy. Developments in Clay Science, 2. Elsevier, Amsterdam, 180 pp.

    Google Scholar 

  • Nakahira, M. and Kato, T. (1964) Thermal transformation of pyrophyllite and talc as revealed by X-ray and electron diffraction studies. Clays and Clay Minerals 12, 21–27.

    Article  Google Scholar 

  • Palaniandy, S., Azizli, N.H.J.K.A.M., Hashim, S.F.S., and Hussin, H. (2009) Production of talc nanosheets via fine grinding and sonication processes. Journal of Nuclear and Related Technologies, 6 (special edition), 1–11.

    Google Scholar 

  • Perdikatsis, V. and Burzlaff, H. (1981) Strukturverfeinerung am Talk Mg3[(OH)2Si4O10]. Zeitschrift für Kristallographie, 156, 177–186.

    Google Scholar 

  • Pérez-Maqueda, L.A., Blanes, J.M., Pascual, J., and Pérez-Rodríguez, J.L. (2004a) The influence of sonication on the thermal behavior of muscovite and biotite.Journal of the European Ceramic Society, 24, 2793–2801.

    Article  Google Scholar 

  • Pérez-Maqueda, L.A., Jiménez De Haro, M.C., Poyato, J., and Pérez-Rodríguez, J.L. (2004b) Comparative study of ground and sonicated vermiculite. Journal of Materials Science, 39, 5347–5351.

    Article  Google Scholar 

  • Pérez-Maqueda, L.A., Montes, O.M., Gonzalez-Macias, E.M., Franco, F., and Pérez-Rodríguez, J.L. (2004c) Thermal transformation of sonicated pyrophyllite. Applied Clay Science, 24, 201–207.

    Article  Google Scholar 

  • Pérez-Maqueda, L.A., Duran, A., and Pérez-Rodríguez, J.L. (2005) Preparation of submicron talc particles by sonication. Applied Clay Science, 28, 245–255.

    Article  Google Scholar 

  • Pérez-Rodríguez, J.L., Carrera, F., Poyato, J., and Pérez-Maqueda, L.A. (2002) Sonication as a tool for preparing nanometric vermiculite particles. Nanotechnology, 13, 382–387.

    Article  Google Scholar 

  • Pérez-Rodríguez, J.L., Pascual, J., Franco, F., Jiménez de Haro, M.C., Duran, A., Ramírez del Valle, and Pérez-Maqueda, L.A. (2006) The influence of ultrasound on the thermal behaviour of clay minerals. Journal of the European Ceramic Society, 26, 747–753.

    Article  Google Scholar 

  • Pérez-Rodríguez, J.L. Wiewióra, A., Ramirez-Valle, V., and Pérez-Maqueda, L.A. (2007) Preparation of nano-pyrophyllite. Comparative study of sonication and grinding. Journal of Physics and Chemistry of Solids, 68, 1225–1229.

    Article  Google Scholar 

  • Pérez-Rodríguez, J.L., Duran, A., Sánchez Jiménez, P.E., Franquelo, M.L., Perejón, A., Pascual-Cosp, J., and Pérez-Maqueda, L.A. (2010) Study of the dehydroxylationrehydroxylation of pyrophyllite. Journal of the American Ceramic Society, 93, 2392–2398.

    Article  Google Scholar 

  • Petit, S., Martin, F., Wiewióra, A., De Parseval, P., and Decarreau, A. (2004) Crystal-chemistry of talc: A near infrared (NIR) spectroscopy study. American Mineralogist, 89, 319–326.

    Article  Google Scholar 

  • Poli, A.L., Batista, T., Schmitt, C.C., Gessner, F., and Neumann, M.G. (2008) Effect of sonication on the particle size of montmorillonite clays. Journal of Colloid and Interface Science, 325, 386–390.

    Article  Google Scholar 

  • Ptáček, P., Šoukal, F., Opravil, T., Havlica, J., Másilko, J., and Wasserbauer, J. (2013) Preparation of dehydroxylated and delaminated talc: Meta-talc. Ceramics International, 39, 9055–9061.

    Article  Google Scholar 

  • Radvanec, M., Bajtoš, P., Németh, Z., Koděra, P., Prochaska, W., Roda, Š., Tréger, M., Baláž, P., Grecula, P., Cicmanová, S., Krá, J., and Žák, K. (2010) Magnesite and Talc in Slovakia — Genetic and Geoenvironmental Models. State Geological Institute of Dionýz Štúr, Slovakia, 179 pp.

  • Rumpf, H. and Schubert, H. (1978) Adhesion forces in agglomeration processes. Pp. 357–376 in: Ceramic Processing before Firing (G. Onoda and L. Hench, editors). Wiley, New York.

    Google Scholar 

  • Sánchez-Soto, P.J., Wiewióra, A., Avilés, M.A., Justo, A., Pérez-Maqueda, L.A., Pérez-Rodrígez, J.L., and Bylina, P. (1997) Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape. Applied Clay Science, 12, 297–312.

    Article  Google Scholar 

  • Şener, S. and Özyılmaz, A. (2010) Adsorption of naphthalene onto sonicated talc from aqueous solutions. Ultrasonics Sonochemistry, 17, 932–938.

    Article  Google Scholar 

  • Sidorová, M. and Čorej, P. (2013) Flotation method in talc material processing from the Gemerská Poloma Deposit in Slovakia. Gospodarka Surowcami Mineralnymi, 29, 37–46.

    Article  Google Scholar 

  • Soriano, M., Melgosa, M., Sánchez-Maranón, M., Delgado, G., Gámiz, E., and Delgado, R. (1998) Whiteness of talcum powders as a quality index for pharmaceutical uses. Color Research and Application, 23, 178–185.

    Article  Google Scholar 

  • Suslick, K.S. (1989) The chemical effects of ultrasound. Scientific American, 260, 80–86.

    Article  Google Scholar 

  • Środoń, J., Drits, V.A., McCarty, D.K., Hsieh, J.C.C., and Eberl, D.D. (2001) Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays and Clay Minerals, 49, 514–528.

    Article  Google Scholar 

  • Tamura, K., Yokoyama, S., Pascua, C.S., and Yamada, H. (2008) New age of polymer nanocomposites containing dispersed high-aspect-ratio silicate nanolayers. Chemistry of Materials, 20, 2242–2246.

    Article  Google Scholar 

  • Tao, Q., Su, L., Frost, R.L., Zhang, D., Chen, M., Shen, W. and He, H. (2014) Silylation of mechanically ground kaolinite. Clay Minerals, 49, 559–568.

    Article  Google Scholar 

  • Terada, K. and Yonemochi, E. (2004) Physicochemical properties and surface free energy of ground talc. Solid State Ionics, 172, 459–462.

    Article  Google Scholar 

  • Tessier, D. (1984) Étude experimental de l’organisation des materiaux argileux. Dr. Science thesis, Univ. Paris VII, France.

  • Togari, K. (1979) Whiteness in colour of talc. Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy, 19, 213–220.

    Google Scholar 

  • Uhlík, P., Šucha, V., Eberl, D.D., Puškelová, L., and Čaplovičová, M. (2000) Evolution of pyrophyllite particle sizes during dry milling. Clay Minerals, 35, 423–432.

    Article  Google Scholar 

  • Vdović, N., Jurina, I., Skapin, S.D., and Sondi, I. (2010) The surface properties of clay minerals modified by intensive dry milling. Applied Clay Science, 48, 575–580.

    Article  Google Scholar 

  • Velho, J.A. and Gomes, C. (1991) Characterization of Portuguese kaolins for the paper industry: beneficiation through new delamination techniques. Applied Clay Science, 6, 155–170.

    Article  Google Scholar 

  • Virta, R.L. (2010) Mineral Commodity Summaries 2010. U.S. Geological Survey, Reston, Virginia, USA, 193 pp.

    Google Scholar 

  • Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.

    Article  Google Scholar 

  • Wilkins, R.W.T and Ito, J. (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 1649–1661.

    Google Scholar 

  • Wiewióra, A., Pérez-Rodríguez, J.L., Perez-Maqueda, L.A., and Drapała, J. (2003) Particle size distribution in sonicated high- and low-charge vermiculites. Applied Clay Science, 24, 51–1661.

    Article  Google Scholar 

  • Wiewióra, A., Pérez-Rodríguez, J.L., Perez-Maqueda, L.A., and Drapała, J. (2003) Particle size distribution in sonicated high- and low-charge vermiculites. Applied Clay Science, 24, 51

    Article  Google Scholar 

  • Yang, H., Du, C., Hu, Y., Jin, S., Yang, A., and Awakumov, E.G. (2006) Preparation of porous material from talc by mechanochemical treatment and subsequent leaching. Applied Clay Science, 31, 290–297.

    Article  Google Scholar 

  • Zdrálková, J., Valášková, M., and Študentová S. (2013) Talc properties after acid treatment and mechanical procedures. NANOCON 2013, 16.-18.10, Brno, Czech Republic, 6 pp.

  • Ziadeh, M., Chwalka, B., Kalo, H., Schuütz, M.R., and Breu, J. (2012) A simple approach for producing high aspect ratio fluorohectorite nanoplatelets utilizing a stirred media mill (ball mill). Clay Minerals, 47, 341–353.

    Article  Google Scholar 

  • Zvyagin, B.B., Mishchenko, K.S., and Soboleva, S.V. (1969) Structure of pyrophyllite and talc in relation to the polytypes of mica-type minerals. Soviet Physics-Crystallography, 13, 511–515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Uhlík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čavajda, V., Uhlík, P., Derkowski, A. et al. Influence of Grinding and Sonication on the Crystal Structure of Talc. Clays Clay Miner. 63, 311–327 (2015). https://doi.org/10.1346/CCMN.2015.0630405

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2015.0630405

Key Words

Navigation