Skip to main content
Log in

Characterization of titanium powders processed in n-hexane by high-energy ball milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The effect of speed and milling time on the morphology, crystallite size, and phase composition of Ti Cp powders processed in n-hexane by high-energy ball milling (HEBM) using a E-max Retsch equipment was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Lattice parameters, mean crystallite size, lattice strain, and dislocation density were obtained from Rietveld analysis. The XRD and TEM results show that the HEBM process of the Ti Cp promotes the transition from HCP to FCC after 6 h of milling at 1400 rpm. The transformation process could be attributed to the energy generated in the milling process which induces high deformation and presence of high-density dislocations in the powder.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fang ZZ, Paramore JD, Sun P, Ravi Chandran KS, Zhang Y, Xia Y, Cao F, Koopman M, Free M (2018) Powder metallurgy of titanium–past, present, and future. Int Mater Rev 63(7):407–459. https://doi.org/10.1080/09506608.2017.1366003

    Article  Google Scholar 

  2. Wang M, Zhou J, Yin Y, Nan H, Xue P, Tu Z (2017) Hot deformation behavior of the Ti6Al4V alloy prepared by powder hot isostatic pressing. J Alloys Compd 721:320–332. https://doi.org/10.1016/j.jallcom.2017.06.003

    Article  Google Scholar 

  3. Romero C, Yang F, Bolzoni L (2018) Fatigue and fracture properties of Ti alloys from powder-based processes – a review. Int J Fatigue 117:407–419. https://doi.org/10.1016/j.ijfatigue.2018.08.029

    Article  Google Scholar 

  4. Duan W, Yin Y, Zhou J, Wang M, Nan H, Zhang P (2019) Dynamic research on Ti6Al4V powder HIP densification process based on intermittent experiments. J Alloys Compd 771:489–497. https://doi.org/10.1016/j.jallcom.2018.08.261

    Article  Google Scholar 

  5. Whittaker D, Froes FH (Sam) (2015) Future prospects for titanium powder metallurgy markets. Titanium Powder Metallurgy 579–600. https://doi.org/10.1016/B978-0-12-800054-0.00030-7

  6. Duda T, Raghavan LV (2016) 3D metal printing technology. Int Fed Autom Control (IFAC) :49(29):103–110. https://doi.org/10.1016/j.ifacol.2016.11.111

  7. Bolzoni L (2011) Diseño y Procesado de Aleaciones de Titanio mediante Técnicas Pulvimetalúrgicas Avanzadas. Tesis Doctoral, Universidad Carlos III de Madrid.

  8. Esteban PG, Bolzoni L, Ruiz-Navas EM, Gordo E (2011) Introducción al procesado pulvimetalúrgico del titanio. Rev Metal 47(2):169–187. https://doi.org/10.3989/revmetalmadrid.0943

    Article  Google Scholar 

  9. Nouri A, Sola A (2018) Metal particle shape: a practical perspective. Met Powder Rep 73(5):276–282. https://doi.org/10.1016/j.mprp.2018.04.001

    Article  Google Scholar 

  10. Phasha M, Maweja K, Babst C (2010) Mechanical alloying by ball milling of Ti and Mg elemental powders: operation condition considerations. J Alloys Compd 492(1–2):201–207. https://doi.org/10.1016/j.jallcom.2009.11.184

    Article  Google Scholar 

  11. Dabhade VV, Rama Mohan TR, Ramakrishnan P (2001) Synthesis of nanosized titanium powder by high energy milling. Appl Surf Sci 182(3–4):390–393. https://doi.org/10.1016/S0169-4332(01)00456-1

    Article  Google Scholar 

  12. Galindez Y, Correa E, Zuleta AA, Valencia-Escobar A, Calderon D, Toro L, Chacon P, Echeverría F (2019) Improved Mg–Al–Zn magnesium alloys produced by high energy milling and hot sintering. Met Mater Int. https://doi.org/10.1007/s12540-019-00490-1

  13. Yang L (2015) Nanotechnology-enhanced metals and alloys for orthopedic implants, Nanotechnology-Enhanced Orthopedic Materials. Elsevier Ltd, Amsterdam

    Google Scholar 

  14. Phasha MJ, Bolokang AS, Ngoepe PE (2010) Solid-state transformation in nanocrystalline Ti induced by ball milling. Mater Lett 64(10):1215–1218. https://doi.org/10.1016/j.matlet.2010.02.054

    Article  Google Scholar 

  15. Dorofeev GA, Lubnin AN, Lad Yanov VI, Mukhgalin VV, Puskkarev BE (2014) Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons. Phys Met Metallogr 115(2):157–168. https://doi.org/10.1134/S0031918X14020057

    Article  Google Scholar 

  16. Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New York

    Book  Google Scholar 

  17. Suryanarayana C, Froes FHS (1990) Nanocrystalline titanium-magnesium alloys through mechanical alloying. J Mater Res 5(9):1880–1886. https://doi.org/10.1557/JMR.1990.1880

    Article  Google Scholar 

  18. Suzuki T, Nagumo N (1995) Metastable intermediate phase formation at reaction milling of titanium and n-heptane. Scr Metall Mater 32(8):1215–1220. https://doi.org/10.1016/0956-716X(95)00128-I

    Article  Google Scholar 

  19. Bolokang AS, Motaung DE, Arendse CJ, Muller TFG (2015) Formation of the metastable FCC phase by ball milling and annealing of titanium-stearic acid powder. Adv Powder Technol 26(2):632–639. https://doi.org/10.1016/j.apt.2015.01.013

    Article  Google Scholar 

  20. Avar B, Ozcan S (2014) Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments. Ceram Int 40(7 PART B):11123–11130. https://doi.org/10.1016/j.ceramint.2014.03.137

    Article  Google Scholar 

  21. Manna I, Chattopadhyay PP, Nandi P, Banhart F, Fecht HJ (2003) Formation of face-centered-cubic titanium by mechanical attrition. J Appl Phys 93(3):1520–1524. https://doi.org/10.1063/1.1530718

    Article  Google Scholar 

  22. Wawner FE, Lawless KR (1969) Epitaxial growth of titanium thin films. J Vac Sci Technol 6(4):588–590. https://doi.org/10.1116/1.1315691

    Article  Google Scholar 

  23. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  24. Waseda Y, Matsubara E, Shinoda K (2001) X ray diffraction crystallography. Springer, Berlin

    Google Scholar 

  25. Hajalilou A, Hashim M, Ebrahimi-Kahizsangi R, Ismail I, Sarami N (2014) Synthesis of titanium carbide and TiC-SiO2 nanocomposite powder using rutile and Si by mechanically activated sintering. Adv Powder Technol 25(3):1094–1102. https://doi.org/10.1016/j.apt.2014.02.008

    Article  Google Scholar 

  26. Ali S, Karunanithi R, Prashanth M, Rahman MA (2019) X-ray peak broadening on microstructure, and structural properties of titanium and Ti-6Al-4V alloys. Mater Today Proc 27:2390–2393. https://doi.org/10.1016/j.matpr.2019.09.137

    Article  Google Scholar 

  27. Sakher E, Loudjani N, Benchiheub M, Bououdina M (2018) Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using rietveld analysis. J Nanomater 2018:1–11. https://doi.org/10.1155/2018/2560641

    Article  Google Scholar 

  28. Singh P, Abhash A, Yadav N, Shafeeq M, Singh IB, Mondal DP (2018) Effect of milling time on powder characteristics and mechanical performance of Ti4wt%Al alloy. Powder Technol 342:275–287. https://doi.org/10.1016/j.powtec.2018.09.075

    Article  Google Scholar 

  29. Asano K, Enoki H, Akiba E (2009) Synthesis process of Mg–Ti BCC alloys by means of ball milling. J Alloys Compd 486(1–2):115–123. https://doi.org/10.1016/j.jallcom.2009.06.140

    Article  Google Scholar 

  30. Ghosh B, Pradhan SK (2010) Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying. Mater Chem Phys 120(2–3):537–545. https://doi.org/10.1016/j.matchemphys.2009.11.048

    Article  Google Scholar 

  31. Shial SR, Masanta M, Chaira D (2018) Recycling of waste Ti machining chips by planetary milling: generation of Ti powder and development of in situ TiC reinforced Ti-TiC composite powder mixture. Powder Technol 329:232–240. https://doi.org/10.1016/j.powtec.2018.01.080

    Article  Google Scholar 

  32. Hosseini-Gourajoubi F, Pourabdoli M, Uner D, Raygan S (2015) Effect of process control agents on synthesizing nano-structured 2Mg-9Ni-Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2. Adv Powder Technol 26:448–453. https://doi.org/10.1016/j.apt.2014.11.017

    Article  Google Scholar 

  33. Ma Q, Froes FHS (2015) Titanium Powder Metallurgy. Elsevier Inc., Amsterdam

    Google Scholar 

  34. Xu W, Xiao S, Lu X, Chen G, Liu C, Qu X (2019) Fabrication of commercial pure Ti by selective laser melting using hydride-dehydride titanium powders treated by ball milling. J Mater Sci Technol 35(2):322–327. https://doi.org/10.1016/j.jmst.2018.09.058

    Article  Google Scholar 

  35. Zhou H, Hu L, Sun Y, Zhang H, Duan C, Yu H (2016) Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling. Mater Charact 113:108–116. https://doi.org/10.1016/j.matchar.2016.01.014

    Article  Google Scholar 

  36. Kurama H, Erkuş Ş, Gaşan H (2017) The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill. Ceram Int 43:S391–S396. https://doi.org/10.1016/j.ceramint.2017.05.274

    Article  Google Scholar 

  37. Zou C, Long Y, Zheng X, Lin H, Zhang F (2017) Effect of ball sizes on synthesis of OsB2 powders by mechanical alloying. Ceram Int 43(18):17111–17115. https://doi.org/10.1016/j.ceramint.2017.09.128

    Article  Google Scholar 

  38. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  Google Scholar 

  39. Keskinen J, Pogany A, Rubin J, Ruuskanen P (1995) Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane. Mater Sci Eng A 196:205–211. https://doi.org/10.1016/0921-5093(94)09701-1

    Article  Google Scholar 

  40. Lohse BH, Calka A, Wexler D (2005) Raman spectroscopy as a tool to study TiC formation during controlled ball milling. J Appl Phys 97(11):1–7. https://doi.org/10.1063/1.1927282

    Article  Google Scholar 

  41. Delogu F, Takacs L (2014) Mechanochemistry of Ti-C powder mixtures. Acta Mater 80:435–444. https://doi.org/10.1016/j.actamat.2014.08.036

    Article  Google Scholar 

  42. Chen C, Qian S, Wang S, Niu L, Liu R, Liao B, Zhong Z, Lu P, Li P, Cao L, Wu Y (2018) The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature. Mater Charact 136:257–263. https://doi.org/10.1016/j.matchar.2017.12.031

    Article  Google Scholar 

  43. Edalati K, Emami H, Staykov A, Smith DJ, Akiba E, Horita Z (2015) Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance. Acta Mater 99:150–156. https://doi.org/10.1016/j.actamat.2015.07.060

    Article  Google Scholar 

  44. Zhang DL, Ying DY (2002) Formation of fcc titanium during heating high energy ball milled Al-Ti powders. Mater Lett 52(4–5):329–333. https://doi.org/10.1016/S0167-577X(01)00417-7

    Article  Google Scholar 

  45. Han G, Lu X, Xia Q, Lei B, Yan Y, Shang CJ (2018) Face-centered-cubic titanium - a new crystal structure of Ti in a Ti-8Mo-6Fe alloy. J Alloys Compd 748:943–952. https://doi.org/10.1016/j.jallcom.2018.03.218

    Article  Google Scholar 

  46. Lu CJ, Zhang J, Li ZQ (2004) Structural evolution of titanium powder during ball milling in different atmospheres. J Alloys Compd 381(1–2):278–283. https://doi.org/10.1016/j.jallcom.2004.03.130

    Article  Google Scholar 

  47. Chatterjee P, Sen Gupta SP (2001) An X-ray diffraction study of nanocrystalline titanium prepared by high-energy vibrational ball milling. Appl Surf Sci 182(3–4):372–376. https://doi.org/10.1016/S0169-4332(01)00451-2

    Article  Google Scholar 

  48. Chatterjee P, Sen Gupta SP (2001) An X-ray diffraction study of strain localization and anisotropic dislocation contrast in nanocrystalline titanium. Philos Mag A 81(1):49–60. https://doi.org/10.1080/01418610108216617

    Article  Google Scholar 

Download references

Funding

This study is supported by the ‘Departamento Administrativo de Ciencia, Tecnología e Innovación– COLCIENCIAS (Project 111580862830, contract 183-2019), Universidad de Antioquia, Centro de Investigación para el Desarrollo y la Innovación (CIDI) from the Universidad Pontificia Bolivariana (Rad:482C-05/19-35), and Universidad de Medellín.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Restrepo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restrepo, A.H., Ríos, J.M., Arango, F. et al. Characterization of titanium powders processed in n-hexane by high-energy ball milling. Int J Adv Manuf Technol 110, 1681–1690 (2020). https://doi.org/10.1007/s00170-020-05991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05991-7

Keywords

Navigation